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Introduction

This talk bears on a result called the Modularity Theorem:

All rational elliptic curves arise from modular forms.

Taniyama first suggested in the 1950s that a statement along these lines might be
true, and a precise conjecture was formulated by Shimura. A paper of Weil [1]
provided strong theoretical evidence for the conjecture. The theorem was proved
for a large class of elliptic curves by Wiles [2] with a key ingredient supplied by joint
work with Taylor [3], completing the proof of Fermat’s Last Theorem after some
350 years. The Modularity Theorem was proved completely by Breuil, Conrad,
Diamond, and Taylor [4].

I will not attempt to explain (much less prove) the Modularity Theorem, but
only to touch on the fact that:

Representations of Galois groups play a crucial role.

Modularity can be stated in terms of Riemann surfaces or complex Jacobians or
complex Abelian varieties, or similarly but with the setting transferred from com-
plex analysis to algebraic geometry over the rational numbers. In the context of
arithmetic algebraic geometry, the issues of modularity can be studied in finite
characteristic, i.e., we may reduce polynomial equations with integer coefficients
modulo primes p. But it is ℓ-adic Galois representations—lifting back to charac-
teristic zero but in a non-Archimedean environment—that provide modularity a
framework rich enough in additional structure that the result can be proved.

The talk will sketch an example of the connection between modular forms and
Galois groups, the simplest example involving a non-Abelian group.
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Part 1. Motivating Ideas

1. Quadratic Reciprocity and Eigenvalues

One idea of modularity is that:

Solution-counts can be viewed as eigenvalues.

For an elementary version of this idea, consider a situation from elementary number
theory. Take a quadratic equation

Q : x2 = d, d ∈ Z6=0 squarefree,

and for each prime number p define an integer ap(Q),

ap(Q) =

(

the number of solutions x of equation Q

working modulo p

)

− 1.

The values ap(Q) extend multiplicatively to values an(Q) for all positive integers n,
meaning that amn(Q) = am(Q)an(Q) for all m and n. By definition, the solution
count is the Legendre symbol,

ap(Q) =
(

d
p

)

, p > 2.

So:
“We are done.”

But the immediate point here is to place this elementary, fully-understood situation
into two larger contexts, utterly different from one another.

The point of the talk as a whole is to place a slightly more complicated, yet
still fully-understood situation into the two larger contexts as well. The issues that
emerge are already far more substantive.

The idea of modularity is that the more tractable of the two situations, the
analytic side, generates all situations that arise on the more difficult arithmetic

side.
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One statement of the Quadratic Reciprocity Theorem is:

ap(Q) depends only on the value of p modulo 4|d|.
This can be reinterpreted as a statement that the solution-counts {a2(Q), a3(Q),
a5(Q), . . . } arise as a system of eigenvalues on a finite-dimensional complex vector
space associated to the equation Q.

Let N = 4|d|, let (Z/NZ)× be the multiplicative group of integer residue classes
modulo N , and let VN be the vector space of complex-valued functions on the
group,

VN = {f : (Z/NZ)× −→ C} (where N = N(d) = 4|d|).
For each prime p define a linear operator Tp on VN ,

Tp : VN −→ VN , (Tpf)(n) =

{

f(pn) if p ∤ N,

0 if p | N,
where the product pn ∈ (Z/NZ)× uses the reduction of p modulo N . Consider a
particular function f = fQ in VN ,

f : (Z/NZ)× −→ C, f(n) = an(Q) for n ∈ (Z/NZ)×.

This is well defined by Quadratic Reciprocity as stated above. Immediately, f is an
eigenvector for the operators Tp,

(Tpf)(n) =

{

f(pn) = apn(Q) = ap(Q)an(Q) if p ∤ N,

0 if p | N
= ap(Q)f(n) in all cases.

That is,
Tpf = ap(Q)f for all primes p.

And so indeed {ap(Q)} is a system of eigenvalues as claimed.
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2. Quadratic Reciprocity and an Abelian Galois Number Field

Now we turn to the algebraic side. Let

F = Q(d1/2), d ∈ Z6=0 squarefree,

Then F/Q is a Galois extension of degree 2, and its Galois group Gal(F/Q) is
isomorphic to {±1}. The Galois group is generated by

σ : d1/2 7−→ −d1/2,

and the isomorphism is

Gal(F/Q)
∼−→ {±1}, σ 7→ −1.

The rational primes p ∤ 2d are unramified (squarefree) in F, and their behavior is
(letting OF denote the ring of algebraic integers in F)

pOF =

{

p1p2 if d is a square modulo p,

p if d is not a square modulo p.

We want to associate elements of the Galois group to primes. Let p ∤ 2d be a
rational prime, and let p be a maximal ideal of OF lying over p. Algebraic number
theory guarantees a Frobenius element Frobp of Gal(F/Q), characterized by the
condition

Frobp(x) ≡ xp (mod p) for all x ∈ OF.

Thus Frobp acts on the residue field OF/p literally by raising to the pth power.
Because the Galois group is Abelian, the Frobenius depends only on the underlying
rational prime p rather than on the ideal p lying over it.

To compute the Frobenius element in the quadratic field case, note that
(

d1/2
)p

= d(p−1)/2d1/2.

Euler’s Lemma says that d(p−1)/2 ≡ (d/p) (mod p), and so the Frobenius element
multiplies d1/2 by the Legendre symbol. There are infinitely many such p such that
(d/p) = 1, and similarly for (d/p) = −1. Therefore every element of the Galois
group of F takes the form Frobp for infinitely many p, and there is an isomorphism

Gal(F/Q)
∼−→ {±1}, Frobp 7−→

(

d
p

)

for p ∤ 4d.

Thus the system of eigenvalues {ap(Q)} = {(d/p)} also appears naturally in the
simplest nontrivial character of a Galois group.
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3. Dirichlet Characters: the One-Dimensional Abelian Case

Still in the Abelian environment, we illustrate proto-modularity more generally.
Any Dirichlet character,

χ : (Z/NZ)× −→ C×,

gives rise to a corresponding Abelian Galois group character,

ρχ : Gal(Q(ζN )/Q) −→ C× (where ζN = e2πi/N ),

as follows. There is an isomorphism

Gal(Q(ζN )/Q)
∼−→ (Z/NZ)×, (ζN 7→ ζa

N ) 7−→ a (mod N).

So in the following diagram, we may define ρχ to make the triangle commute.

Gal(Q(ζN )/Q)
∼

//

ρχ

&&MMMMMMMMMMM
(Z/NZ)×

χ
zzuuuuuuuuu

C×

For the converse, consider any finite Abelian extension F/Q and any character

ρ : Gal(F/Q) −→ C×.

The very substantive
Kronecker–Weber Theorem

states that F lies in Q(ζN ) for some N . Define χρ to make the following diagram
commute:

Gal(Q(ζN )/Q)
∼

//

π

��

(Z/NZ)×

χρ

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Gal(F/Q)

ρ
&&MMMMMMMMMMM

C×

In sum, Dirichlet characters lead to Abelian Galois group characters, and the
Kronecker–Weber Theorem says that Abelian Galois group characters arise from
Dirichlet characters.

Here and in the Quadratic Reciprocity example we have yet to see any analysis
on the “analytic side.” That is about to change.
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Part 2. Hecke’s Construction

4. What is a Modular Form?

4.1. Eisenstein series. The German word modul connotes what we now would
call a lattice. A form is a homogeneous function, such as a polynomial in two
variables all of whose terms have the same total degree. The term modular form

arose from functions such as Eisenstein series,

Gk(Λ) =
∑

λ∈Λ

′ 1

λk
, Λ ⊂ C a lattice.

Here k > 2 is an even integer, and the primed summation sign means to omit λ = 0
from the summation. Clearly Gk(mΛ) = m−kGk(Λ) for all nonzero m ∈ C. That
is, Gk is a function of modules, and a form. Any lattice Λ = λ1Z ⊕ λ2Z (where
we may take λ1/λ2 to lie in the upper half plane H) is dilated by m = 1/λ2 to
the lattice mΛ = Λτ = τZ ⊕ Z where τ = λ1/λ2. If we normalize our lattices
by so dilating them, the Eisenstein series become functions of the single complex
variable τ ,

Gk(τ) =
∑

(c,d)

′ 1

(cτ + d)k
, τ ∈ H.

Some analysis in in play here in that the Eisenstein series converges nicely enough
to be holomorphic.

The modular group,

SL2(Z) =

{[

a b
c d

]

: a, b, c, d ∈ Z, ad− bc = 1

}

,

acts on the upper half plane via fractional linear transformations,
[

a b
c d

]

(τ) =
aτ + b

cτ + d
, τ ∈ H,

and one can check that the transformation law of the dehomogenized Eisenstein
series is

Gk(γ(τ)) = (cτ + d)kGk(τ), γ =

[

a b
c d

]

.

Again analysis is in play since the transformation law requires rearranging the terms
of the Eisenstein series.

4.2. Differential forms. Complex analysis relies on path integrals of differentials
f(τ)dτ , and SL2(Z)-invariant path integration on the upper half plane requires such
differentials to be invariant when τ is replaced by any γ(τ). A small calculation
shows that

dγ(τ) = (cτ + d)−2dτ, γ =

[

a b
c d

]

,

and so the relation f(γ(τ)) d(γ(τ)) = f(τ) dτ is

f(γ(τ)) = (cτ + d)2f(τ), γ =

[

a b
c d

]

,

similarly to the transformation law for Eisenstein series. Although the exponent 2
in the previous display is the relevant exponent for modularity, in this talk we will
see a similar formula with exponent 1.
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4.3. Fourier series. Specialize the matrix
[

a b
c d

]

to [ 1 1
0 1 ] to see that modular forms

are Z-periodic,
f(τ + 1) = f(τ)

and thus a modular form has a Fourier series,

f(τ) =

∞
∑

n=0

an(f) e (nτ) , where e (z) = e2πiz.

(The fact that the sum is over n ≥ 0 rather than over n ∈ Z is a further condition
in the definition of a modular form.)

4.4. The weight-k operator. Introduce the notation

(f [γ]k)(τ) = (cτ + d)−kf(γ(τ)).

Then the transformation condition for modularity is simply

f [γ]k = f for all γ ∈ SL2(Z).

More generally, we may replace SL2(Z) with a subgroup, and we may incorporate
a character into the transformation law,

f [γ]k = χ(γ)f for all γ ∈ Γ.
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5. Example: The Basic Theta Function

5.1. The Fourier transform. Any function f ∈ L1(R) has a Fourier transform

Ff : R −→ C given by

Ff(x) =

∫

y∈R

f(y)e−2πiyxdy.

Although the Fourier transform is continuous, it need not belong to L1(R). But if
f ∈ L1(R) ∩ L2(R) then Ff ∈ L2(R).

Conceptually the Fourier transform value Ff(x) ∈ C is a sort of inner product
〈f, ψx〉 where ψx is the frequency-x oscillation ψx(y) = e2πiyx. Thus we might hope
to resynthesize f from the continuum of oscillations weighted suitably by the inner
products,

f(y) =

∫

x∈R

〈f, ψx〉ψx(y) dx =

∫

x∈R

Ff(x)e2πixy dx, y ∈ R.

However, the question of which functions f satisfy the previous display, and the
analysis of showing that they do, is nontrivial.

5.2. Fourier transform of the Gaussian and its dilations. Let g be the Gauss-

ian function,

g(x) = e−πx2

.

The Gaussian is well known to be its own Fourier transform,

Fg = g.

(One can show this with a complex contour integration. Alternatively, one can
differentiate Fg(ξ) under the integral sign and then integrate by parts to see that
(Fg)′(ξ) = −2πξFg(ξ); also Fg(0) = 1, so Fg and g satisfy the same differential
equation and initial condition.)

For any function f ∈ L1(R) and any positive number r, the r-dilation of f ,

fr(x) = f(xr),

has Fourier transform
F(fr) = r−1(Ff)r−1 .

So in particular, returning to the Gaussian function g,

the Fourier transform of g(xt1/2) is t−1/2g(xt−1/2), t > 0.

5.3. The theta function. Let H denote the complex upper half plane. The theta

function on H is

ϑ : H −→ C, ϑ(τ) =
∑

n∈Z

eπin2τ .

The sum converges very rapidly away from the real axis, making absolute and
uniform convergence on compact subsets of H easy to show, and thus defining a
holomorphic function. Clearly

ϑ(τ + 2) = ϑ(τ), τ ∈ H.
Specialize to τ = it with t > 0, and write θ(t) for ϑ(it). Again let g be the Gaussian.
The theta function along the positive imaginary axis is a sum of dilated Gaussians,

θ(t) =
∑

n∈Z

e−πn2t, t > 0.
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This is a sum of quickly decreasing functions whose graphs narrow as n grows.

5.4. Poisson summation; transformation law of the theta function. For
any function f ∈ L1(R) such that the sum

∑

d∈Z f(x+ d) converges absolutely and
uniformly on compact sets and is infinitely differentiable as a function of x, the
Poisson summation formula is

∑

n∈Z

f(x+ n) =
∑

n∈Z

Ff(n)e2πinx.

The idea here is that the left side is the periodicization of f , and then the right
side is the Fourier series of the left side, because the nth Fourier coefficient of the
periodicization of f is the nth Fourier transform of f itself.

When x = 0 the Poisson summation formula specializes to
∑

n∈Z

f(n) =
∑

n∈Z

Ff(n).

And especially, if f(x) is the Gaussian g(xt1/2) then Poisson summation with x = 0
shows that

∑

n∈Z

g(nt1/2) = t−1/2
∑

n∈Z

g(nt−1/2),

which is to say,

θ(1/t) = t1/2 θ(t), t > 0.

Returning to the full theta function ϑ(τ), the Uniqueness Theorem of complex
analysis says that the previous display extends to

ϑ(−1/τ) = (−iτ)1/2 ϑ(τ), τ ∈ H.
Consequently,

ϑ

(

τ

2τ + 1

)

= ϑ

(

− 1

−1/τ − 2

)

= (i(1/τ + 2))1/2ϑ (−1/τ − 2)

= (i(1/τ + 2))1/2ϑ (−1/τ)

= (i(1/τ + 2)(−iτ))1/2ϑ (τ)

= (2τ + 1)1/2ϑ (τ) .

This transformation law and the earlier transformation law ϑ(τ+2) = ϑ(τ) together
say that the theta function is a modular form, although this time the exponent in
the transformation law is 1/2 and the relevant transformation matrices

[

a b
c d

]

must
have b and c even.

For a modified version of the theta function,

ϑ : H −→ C, ϑ(τ) =
∑

n∈Z

e
(

n2τ
)

, where e (z) = e2πiz ,

the translation-invariance becomes

ϑ(τ + 1) = ϑ(τ)

and the more complicated transformation law,

ϑ

([

a b
c d

]

τ

)

= (cτ + d)1/2ϑ(τ),
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now requires that c be a multiple of 4. This condition is better suited for defining
linear operators Tp on modular forms.
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6. Modular Forms Via Theta Functions

Recall how we used Quadratic Reciprocity to motivate the Modularity Theorem,
counting the solutions modulo p of the quadratic equation x2 = d. Now consider a
cubic equation instead,

C : x3 = d, d ∈ Z>0 cubefree,

and for each prime p let

ap(C) = (the number of solutions modulo p of equation C) − 1.

Results from elementary number theory show that

(1) ap(C) =











2 if p ≡ 1 (mod 3) and d is a nonzero cube modulo p,

−1 if p ≡ 1 (mod 3) and d is not a cube modulo p,

0 if p ≡ 2 (mod 3) or p | 3d.

We will sketch how Poisson summation and the Cubic Reciprocity Theorem from
number theory construct a modular form having the solution-counts as its prime-
index Fourier coefficients,

ap(θχ) = ap(C).

Furthermore, these coefficients are eigenvalues. The construction is one case of a
general method due to Hecke [1].
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Introduce the ring of Eisenstein integers, geometrically the hexagonal lattice,

A = Z[ζ3] where ζ3 = e2πi/3.

The arithmetic of this ring, to be detailed below, is only slightly more complicated
than the usual arithmetic of the rational integer ring Z. Also we need a few auxiliary
objects, the element α = i

√
3 of A and the ring B = 1

αA (the inverse-different of A).

Thus A ⊂ B ⊂ 1
3A. The three lattices are shown in figure 1.

Figure 1. Three lattices

For any positive integer N and any u in the quotient group 1
3A/NA define a

theta function, more complicated than the simple theta function from before,

θu(τ,N) =
∑

n∈A

e
(

1
N |u+ nN |2τ

)

, τ ∈ H.

The new ingredients here are

• The basic lattice is now A ⊂ C rather than Z ⊂ R.
• A dilation factor N (the level) is now present.
• Rather than take square-sizes over the (dilated) lattice, we do so over the
u-offset translate of it.

The basic properties of θ are as follows. The first and third are similar to the
transformation laws of the basic theta function, while the second is the relation
between θ at two different dilations, a symmetrization over the larger dilation to
obtain the smaller one. The idea is shown in figure 2. (From now until near the
end of the section the symbol d is unrelated to the d of the cubic equation C.)

θu(τ + 1, N) = e
(

|u|2

N

)

θu(τ,N), u ∈ B/NA,

θu(τ,N) =
∑

v∈B/dNA
v≡u (NA)

θv(dτ, dN), u ∈ B/NA, d ∈ Z+,

θv(−1/τ,N) =
−iτ
N
√

3

∑

w∈B/NA

e
(

− tr (vw∗)
N

)

θw(τ,N), v ∈ B/NA.

The first two properties are elementary, but the third one relies on Poisson summa-
tion. Note that the exponent of −iτ in the third one is not 2 or 1/2 but rather 1.
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All three laws require considerably more detail-management than the basic theta
function, and comfort with the algebra of A, but nothing really new.

Figure 2. Point and translates, subgroup, symmetrization

The basic properties help us establish how the theta function transforms under
the group

Γ0(3N,N) =

{[

a b
c d

]

∈ SL2(Z) : b ≡ 0 (mod N), c ≡ 0 (mod 3N)

}

.

The rule is

(θu[γ]1)(τ,N) =
(

d
3

)

θau(τ,N), u ∈ A/NA, γ =
[

a b
c d

]

∈ Γ0(3N,N).

Here (d/3) is the Legendre symbol. Proving the transformation law is painstaking
but still it is elementary. However, the transformation law is unsatisfactory on two
counts: first, the group Γ0(3N,N) does not dovetail easily with linear operators;
and second, the theta function on the right has offset au rather than the offset u
on the left.

To move to a more convenient group and then construct a modular form from
the theta functions, we conjugate and then symmetrize. The group

Γ0(3N
2) =

{[

a b
c d

]

∈ SL2(Z) : c ≡ 0 (mod 3N2)

}
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fits better into the theory of modular forms than the group Γ0(3N,N) from a
moment ago. To conjugate, let δ = [ N 0

0 1 ] so that

δΓ0(3N
2)δ−1 = Γ0(3N,N)

and the conjugation preserves matrix entries on the diagonal. For any γ =
[

a b
c d

]

∈
Γ0(3N

2),

(2)
(θu[δγ]1)(τ,N) = (θu[γ′δ]1)(τ,N) where γ′ = δγδ−1 ∈ Γ0(3N,N)

=
(

d
3

)

(θau[δ]1)(τ,N) since d = dγ′ .

The construction is completed by symmetrizing: Let χ : (A/NA)× −→ C× be a
character, lifted to A. Define

θχ(τ) = 1
6

∑

u∈A/NA

χ(u)θu(Nτ,N).

Then θχ transforms as a modular form of exponent 1 under Γ0(3N
2),

θχ[γ]1 = ψ(d)θχ, γ =
[

a b
c d

]

∈ Γ0(3N
2),

where the character in the transformation law is the given character times the
Legendre symbol,

ψ(d) = χ(d)
(

d
3

)

.

Indeed, the desired transformation of θχ under Γ0(3N
2) follows from (2) since

θχ =
∑

u χ(u)θu[δ]1. The Fourier expansion of θχ is

θχ(τ) = 1
6

∑

n∈A

χ(n)e
(

|n|2τ
)

=

∞
∑

m=0

am(θχ)e (mτ)

where the Fourier coefficients are

(3) am(θχ) = 1
6

∑

n∈A
|n|2=m

χ(n).

This formula shows that θχ = 0 unless χ is trivial on A×.

Some facts about the arithmetic of the Eisenstein integer ring A are as follows.
First, A is a principal ideal domain. For each prime p ≡ 1 (mod 3) there exists an
element πp ∈ A such that πpπp = p, but there is no such element if p ≡ 2 (mod 3).
The maximal ideals of A are

• for each prime p ≡ 1 (mod 3), the two ideals 〈πp〉 and 〈πp〉,
• for each prime p ≡ 2 (mod 3), the ideal 〈p〉,
• for p = 3, the ideal 〈

√
−3〉.

Let πp = p for each prime p ≡ 2 (mod 3), let π3 =
√
−3, and take the set of

generators of the maximal ideals,

S = {πp, πp : p ≡ 1 (mod 3)} ∪ {πp : p ≡ 2 (mod 3)} ∪ {π3}.
Then each nonzero n ∈ A can be written uniquely as

n = u
∏

π∈S

πaπ , u ∈ A∗, each aπ ∈ N, aπ = 0 for all but finitely many π.

Correspondingly χ(n) =
∏

π∈S χ(π)aπ .
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Recall Hecke’s modular form

θχ(τ) = 1
6

∑

n∈A

χ(n)e
(

|n|2τ
)

=

∞
∑

m=0

am(θχ)e (mτ) , am(θχ) = 1
6

∑

n∈A
|n|2=m

χ(n).

Its corresponding L-function is

L(s, θχ) =

∞
∑

m=1

am(θχ)m−s = 1
6

∑

n∈A
n6=0

χ(n)|n|−2s =
∏

π∈S

(1 − χ(π)|π|−2s)−1.

The local Euler factors work out to










(1 − (χ(πp) + χ(π̄p))p
−s + χ(p)p−2s)−1 if p ≡ 1 (mod 3),

(1 − χ(p)p−2s)−1 if p ≡ 2 (mod 3),

(1 − χ(
√
−3)3−s)−1 if p = 3.

That is,

L(s, θχ) =
∞
∑

m=1

am(θχ)m−s =
∏

p

(1 − ap(θχ)p−s + ψ(p)p−2s)−1.

This factorization of L(θχ) says that θχ itself is an eigenfunction of a family of
operators Tp called Hecke operators, whose eigenvalues are the Fourier coefficients
ap(θχ).

The Hecke operator T1 is trivial. Most of the Hecke operators of prime index
are given by the baffling formula

(Tpf)(τ) =







f(pτ) + p−k
∑p−1

j=0 f
(

τ+j
p

)

if p ∤ N,

p−k
∑p−1

j=0 f
(

τ+j
p

)

if p | N.

(Note how our operator Tp in the Quadratic Reciprocity example at the beginning
of the talk is a toy version of this.) The Hecke operators transfer to many different
contexts, manifesting themselves differently in each, and finally in the environment
of local fields they are recognizable as convolution operators. The Hecke operators
of non-prime index are defined from T1 and the Tp by a condition that a generating
function factors as an Euler product,

∞
∑

m=1

Tmm
−s =

∏

p

(1 − Tpp
−s + 〈p〉pk−1−2s)−1.

(Here 〈p〉f = f [α]k for any α =
[

a b
c δ

]

∈ Γ0(3N
2) with δ ≡ d (mod 3N2).) The

similarity between this display and the Euler factorization of L(s, θχ) is no coinci-
dence: the Hecke operators are engineered precisely to pick out the modular forms
whose L-functions have suitable Euler products.

Along with Poisson summation, the other ingredient for constructing a modular
form to match the cubic equation C from the beginning of the section is the Cubic
Reciprocity Theorem. The unit group of A is A× = {±1,±ζ3,±ζ2

3}. Recall that
θχ = 0 unless χ is trivial on A×. Let p be a rational prime.
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• If p ≡ 1 (mod 3) then there exists an element π of A which, along with its
conjugate and units gives all elements of norm p,

{n ∈ A : |n|2 = p} = A×π ∪A×π.

The choice of π can be normalized, e.g., to π = a+bζ3 where a ≡ 2 (mod 3)
and b ≡ 0 (mod 3).

• But if p ≡ 2 (mod 3) then p does not take the form p = |n|2 for any n ∈ A,
as is seen by checking |n|2 modulo 3.

(See 9.1–9.6 of [2] for more on the arithmetic of A.)
A form of Cubic Reciprocity is as follows. (Now the symbol d again comes from

the cubic equation at the beginning of the section, and the value of N , which has
been free throughout this section, depends on d.)

Cubic Reciprocity Theorem. Let d ∈ Z+ be cubefree and let

N = 3
∏

p|d

p.

Then there exists a character

χ : (A/NA)× −→ {1, ζ3, ζ2
3}

such that the multiplicative extension of χ to all of A is trivial on A× and on

primes p ∤ N , while on elements π of A such that ππ̄ is a prime p ∤ N it is trivial

if and only if d is a cube modulo p.

The character χ on (A/NA)× is the cubic counterpart of the quadratic character
(d/·) on (Z/NZ)× with N = 4|d|.

For the character χ of Cubic Reciprocity, Hecke’s modular form θχ(τ,N) lies in
the vector space

VN = M1(3N
2, ψ) (where N = N(d) = 3

∏

p|d

p),

with ψ the quadratic character with conductor 3 (in general ψ(d) = χ(d)(d/3) but
now χ is trivial on primes p ∤ N). Formula (3) shows that the Fourier coefficients
of prime index are

ap(θχ) =











2 if p ≡ 1 (mod 3) and d is a nonzero cube modulo p,

−1 if p ≡ 1 (mod 3) and d is not a cube modulo p,

0 if p ≡ 2 (mod 3) or p | 3d.

That is, the Fourier coefficients are the solution-counts (1) of equation C as antici-
pated at the beginning of the section. Furthermore, we have already seen that they
are a collection of eigenvalues.
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Part 3. Simplest Case on the Arithmetic Side

7. A non-Abelian Galois Number Field

Let d > 1 be a cubefree integer, let d1/3 denote the real cube root of d, and let

F = Q(d1/3, ζ3) where ζ3 = e2πi/3.

Then F/Q is a Galois extension of degree 6, and its Galois group Gal(F/Q) is iso-
morphic to S3, the symmetric group on three letters. The Galois group is generated
by

σ :

(

d1/3 7−→ ζ3d
1/3

ζ3 7−→ ζ3

)

, τ :

(

d1/3 7−→ d1/3

ζ3 7−→ ζ2
3

)

,

and the isomorphism (noncanonical) is

Gal(F/Q)
∼−→ S3, σ 7→ (1 2 3), τ 7→ (2 3).

The rational primes not dividing 3d are unramified (squarefree) in F, and their
behavior is (letting OF denote the ring of algebraic integers in F)

(4) pOF =











p1 · · · p6 if p ≡ 1 (mod 3) and d is a cube modulo p,

p1p2 if p ≡ 1 (mod 3) and d is not a cube modulo p,

p1p2p3 if p ≡ 2 (mod 3).

Again we want to associate elements of the Galois group to primes. Let p be a
rational prime and let p be a maximal ideal of OF lying over p. As before, algebraic
number theory guarantees a Frobenius element Frobp of Gal(F/Q), characterized
by the condition

Frobp(x) ≡ xp (mod p) for all x ∈ OF.

Because the Galois group is non-Abelian, the Frobenius now depends on the ideal p

lying over the rational prime p; however, the conjugacy class of Frobp in Gal(F/Q)
depends only on p.

Since the conjugacy classes in any symmetric group Sn are specified by the cycle
structure of their elements, in this case of S3 they are

{1}, {(1 2), (2 3), (3 1)}, {(1 2 3), (1 3 2)}.
So the conjugacy class of an element of S3 is determined by the element’s order
(here we take great advantage of our group being so small), and therefore this holds
in Gal(F/Q) as well. To determine the conjugacy class of Frobp it thus suffices to
determine its order.

For any unramified rational prime p, i.e., p ∤ 3d, algebraic number theory tells
us that the order is 6 divided by the number of factors of p in in formula (4), so
the associated conjugacy class

(5) {Frobp : p lies over p}
is

the elements of order











1 if p ≡ 1 (mod 3) and d is a cube modulo p,

3 if p ≡ 1 (mod 3) and d is not a cube modulo p,

2 if p ≡ 2 (mod 3).

Each conjugacy class takes the form (5) for infinitely many p, in consequence of the
Tchebotarov Density Theorem.
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8. The Connection With Hecke’s Modular Form

We are ready to relate the simplest non-Abelian Galois number field to the earlier
part of the talk. There is an embedding of S3 in GL2(Z) such that

(1 2 3) 7−→
[

0 1
−1 −1

]

, (2 3) 7−→
[

0 1
1 0

]

.

This gives a representation

ρ : Gal(F/Q) −→ GL2(Z).

The trace of ρ is a well defined function on conjugacy classes (5) and therefore
depends only on the underlying unramified rational primes p,

tr ρ(Frobp) =











2 if p ≡ 1 (mod 3) and d is a cube modulo p,

−1 if p ≡ 1 (mod 3) and d is not a cube modulo p,

0 if p ≡ 2 (mod 3).

Similarly the determinant of ρ is defined on conjugacy classes over unramified
primes,

det ρ(Frobp) =

{

1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).

Recall the modular form θχ(τ) ∈ M1(3N
2, ψ) where N = 3

∏

p|d p and ψ is the

quadratic character with conductor 3. Comparing the previous two displays with
the data for θχ shows that

tr ρ(Frobp) is the Fourier coefficient ap(θχ) when p ∤ 3d

and
det ρ(Frobp) is the character value ψ(p).

In sum, the Galois group representation ρ, as described by its trace and determinant
on Frobenius elements, arises from the modular form θχ.


