LARGE PRIME NUMBERS

This writeup is modeled closely on a writeup by Paul Garrett. See, for example, http://www-users.math.umn.edu/~garrett/crypto/overview.pdf

1. Fast Modular Exponentiation

Given positive integers a, e, and n, the following algorithm quickly computes the reduced power $a^{e} \bmod n$. (Here $x \bmod n$ denotes the element of $\{0, \cdots, n-1\}$ that is congruent to x modulo n. Note that this usage of $x \bmod n$ does not denote an element of $\mathbb{Z} / n \mathbb{Z}$ because such elements are cosets rather than coset representatives.)

- (Initialize) $\operatorname{Set}(x, y, f)=(1, a, e)$.
- (Loop) While $f>0$, do as follows:
- if $f \bmod 2=0$ then replace (x, y, f) by $\left(x, y^{2} \bmod n, f / 2\right)$,
- otherwise replace (x, y, f) by $(x y \bmod n, y, f-1)$.
- (Terminate) Return x.

This algorithm is strikingly efficient both in speed and in space. Especially, the operations on f (halving it when it is even, decrementing it when it is odd) are very simple in binary. To see that the algorithm works, represent the exponent e in binary, say

$$
e=2^{g}+2^{h}+2^{k}, \quad 0 \leq g<h<k .
$$

The algorithm initializes

$$
\left(1, a, 2^{g}+2^{h}+2^{k}\right)
$$

squares the middle entry and halves the right entry g times to get

$$
\left(1, a^{2^{g}}, 1+2^{h-g}+2^{k-g}\right)
$$

multiplies the left entry by the middle entry and decrements the right entry

$$
\left(a^{2^{g}}, a^{2^{g}}, 2^{h-g}+2^{k-g}\right)
$$

and continues on similarly

$$
\begin{aligned}
& \left(a^{2^{g}}, a^{2^{h}}, 1+2^{k-h}\right) \\
& \left(a^{2^{g}+2^{h}}, a^{2^{h}}, 2^{k-h}\right) \\
& \left(a^{2^{g}+2^{h}}, a^{2^{k}}, 1\right) \\
& \left(a^{2^{g}+2^{h}+2^{k}}, a^{2^{k}}, 0\right),
\end{aligned}
$$

and then it returns the first entry, which is indeed a^{e}.
Fast modular exponentiation is not only for computers. For example, to compute $2^{37} \bmod 149$, proceed as follows,

$$
\begin{aligned}
& (1,2 ; 37) \rightarrow(2,2 ; 36) \rightarrow(2,4 ; 18) \rightarrow(2,16 ; 9) \rightarrow(32,16 ; 8) \\
& \rightarrow(32,-42 ; 4) \rightarrow(32,-24 ; 2) \rightarrow(32,-20 ; 1) \rightarrow(105,-20 ; 0)
\end{aligned}
$$

2. Fermat Pseudoprimes

Fermat's Little Theorem states that for any positive integer n, if n is prime then $b^{n-1}=1 \bmod n$ for $b=1, \ldots, n-1$.

In the other direction, all we can say is that

$$
\text { if } b^{n-1}=1 \text { mod } n \text { for all } b=1, \ldots, n-1 \text { then } n \text { might be prime. }
$$

If $b^{n-1}=1 \bmod n$ for some particular $b \in\{1, \ldots, n-1\}$ then n is called a Fermat pseudoprime base b.

There are 669 primes up to 5000 , but only two values of n (1729 and 2821) that are Fermat pseudoprimes base b for $b=2,3,5$ without being prime. This is a false positive rate of 0.04%. The false positive rate up to 500000 just for $b=2,3$ is under 0.01%.

On the other hand, the bad news is that checking more bases b doesn't reduce the false positive rate much further. There are infinitely many Carmichael numbers, numbers n that are Fermat pseudoprimes base b for all $b \in\{1, \ldots, n-1\}$ coprime to n but are not prime.

Carmichael numbers notwithstanding, Fermat pseudoprimes are reasonable candidates to be prime.

3. Strong Pseudoprimes

The Miller-Rabin test on a positive odd integer n and a positive test base b in $\{1, \ldots, n-1\}$ proceeds as follows.

- Factor $n-1$ as $2^{s} m$ where m is odd.
- Replace b by $b^{m} \bmod n$.
- If $b=1$ then return the result that n could be prime, and terminate.
- Do the following s times: If $b=n-1$ then return the result that n could be prime, and terminate; otherwise replace b by $b^{2} \bmod n$.
- If the algorithm has not yet terminated then return the result that n is composite, and terminate.
(Slight speedups here: (1) If the same n is to be tested with various bases b then there is no need to factor $n-1=2^{s} m$ each time; (2) there is no need to compute $b^{2} \bmod n$ on the s th time through the step in the fourth bullet.)

To understand the Miller-Rabin test, consider a positive odd integer n and factor $n-1=2^{s} \cdot m$ where m is odd. Then

$$
\begin{aligned}
X^{2^{s} m}-1= & \left(X^{2^{s-1} m}+1\right)\left(X^{2^{s-1} m}-1\right) \\
= & \left(X^{2^{s-1} m}+1\right)\left(X^{2^{s-2} m}+1\right)\left(X^{2^{s-2} m}-1\right) \\
= & \left(X^{2^{s-1} m}+1\right)\left(X^{2^{s-2} m}+1\right)\left(X^{2^{s-3} m}+1\right)\left(X^{2^{s-3} m}-1\right) \\
& \vdots \\
= & \left(X^{2^{s-1} m}+1\right)\left(X^{2^{s-2} m}+1\right)\left(X^{2^{s-3} m}+1\right) \cdots\left(X^{m}+1\right)\left(X^{m}-1\right) .
\end{aligned}
$$

That is, rewriting the left side and reversing the order of the factors of the right side,

$$
X^{n-1}-1=\left(X^{m}-1\right) \cdot \prod_{r=0}^{s-1}\left(X^{2^{r} m}+1\right)
$$

Substitute in any base b,

$$
b^{n-1}-1=\left(b^{m}-1\right) \cdot \prod_{r=0}^{s-1}\left(b^{2^{r} m}+1\right) \bmod n, \quad b=1, \ldots, n-1
$$

If n is prime then $b^{n-1}-1=0 \bmod n$ for $b=1, \ldots, n-1$, and also $\mathbb{Z} / n \mathbb{Z}$ is a field, so that necessarily one of the factors on the right side vanishes modulo n as well. That is, if n is prime then given any base $b \in\{1, \ldots, n-1\}$, at least one of the factors

$$
b^{m}-1, \quad\left\{b^{2^{r} m}+1: 0 \leq r \leq s-1\right\}
$$

vanishes modulo n. So contrapositively, if for some base $b \in\{1, \ldots, n-1\}$ none of the factors vanishes modulo n then n is composite. Hence the Miller-Rabin test.

A positive integer n that passes the Miller-Rabin test for some b is a strong pseudoprime base b. For any n, at least $3 / 4$ of the b-values in $\{1, \ldots, n-1\}$ have the property that if n is a strong pseudoprime base b then n is really prime. But according to the theory, up to $1 / 4$ of the b-values have the property that n could be a strong pseudoprime base b but not be prime. In practice, the percentage of such b 's is much lower. For n up to 500,000 , if n is a strong pseudoprime base 2 and base 3 then n is prime.
(Beginning of analysis of false positives.)
Let n be composite. Suppose that n is a strong pseudoprime base b for some b. Then one of the following congruences holds:

$$
b^{m}=1 \bmod n, \quad b^{2^{r} m}=-1 \bmod n \quad \text { for } r=0, \cdots, s-1 .
$$

Because $2^{s} m=n-1$, any of these congruences immediately implies

$$
b^{n-1}=1 \bmod n,
$$

which is to say that n is a Fermat pseudoprime base b.
Next we show that if n is divisible by p^{2} for some prime p then there are few bases b for which n is a Fermat pseudoprime base b. In consequence of the previous paragraph, there are thus as few or fewer bases b for which n is a strong pseudoprime base b.

Lemma. Let n be a positive integer. Let x and y be integers such that n is a Fermat pseudoprime base x and base y,

$$
x^{n-1}=y^{n-1}=1 \bmod n
$$

Let p be an odd prime such that $p^{2} \mid n$. If

$$
x=y \bmod p
$$

then

$$
x=y \bmod p^{2} .
$$

For the proof, first we show that $x^{p}=y^{p} \bmod p^{2}$. This follows quickly from the factorization

$$
x^{p}-y^{p}=(x-y)\left(x^{p-1}+x^{p-2} y+\cdots+x y^{p-2}+y^{p-1}\right),
$$

because the condition $x=y \bmod p$ makes each factor on the right side a multiple of p. Second, raise both sides of the relation $x^{p}=y^{p} \bmod p^{2}$ to the power n / p to
get $x^{n}=y^{n} \bmod p^{2}$. But because $x^{n}=x \bmod n$, certainly $x^{n}=x \bmod p^{2}$, and similarly for y. The result follows.

Proposition. Let p be an odd prime. Let n be a positive integer divisible by p^{2}. Let B denote the set of bases b between 1 and $n-1$ such that n is a Fermat pseudoprime base b, i.e.,

$$
B=\left\{b: 1 \leq b \leq n-1 \text { and } b^{n-1}=1 \bmod n\right\}
$$

Then

$$
|B| \leq \frac{p-1}{p^{2}} n \leq \frac{1}{4}(n-1)
$$

To see this, note that the second inequality is elementary to check (to wit, $\left.4(p-1) n \leq(p+1)(p-1) n=\left(p^{2}-1\right) n \leq p^{2} n-p^{2}=p^{2}(n-1)\right)$, so that we need only establish the first inequality. Decompose B according to the values of its elements modulo p,

$$
B=\bigsqcup_{d=1}^{p-1} B_{d}
$$

where

$$
B_{d}=\{b \in B: b=d \bmod p\}, \quad 1 \leq d \leq p-1
$$

For any d such that $1 \leq d \leq p-1$, if $b_{1}, b_{2} \in B_{d}$ then the lemma says that $b_{1}=b_{2} \bmod p^{2}$. It follows that $\left|B_{d}\right| \leq n / p^{2}$, giving the result.

4. Generating Candidate Large Primes

Given n, a simple approach to finding a candidate prime above $2 n$ is as follows. Take the first of $N=2 n+1, N=2 n+3, N=2 n+5, \ldots$ to pass the following test.
(1) Try trial division for a few small primes. If N passes, continue.
(2) Check whether N is a Fermat pseudoprime base 2 . If N passes, continue.
(3) Check whether N is a strong pseudoprime base b as b runs through the first 20 primes.
Any N that passes the test is extremely likely to be prime. And such an N should appear quickly because the slope of the asymptotic prime-counting function is

$$
\frac{d}{d x}\left(\frac{x}{\log x}\right)=\frac{\log x-1}{(\log x)^{2}} \approx \frac{1}{\log x}
$$

so that heuristically a run of $\log x$ gives a rise of 1 , i.e., the next prime. And indeed, using only the first three primes in step (3) of the previous test finds the following correct candidate primes:

The first candidate prime after 10^{50} is $10^{50}+151$.
The first candidate prime after 10^{100} is $10^{100}+267$.
The first candidate prime after 10^{200} is $10^{200}+357$.
The first candidate prime after 10^{300} is $10^{300}+331$.
The first candidate prime after 10^{1000} is $10^{1000}+453$.

5. Certifiable Large Primes

The Lucas-Pocklington-Lehmer Criterion is as follows. Suppose that p a known prime and that some $N=1 \bmod p$ is less than p^{2} as follows:

$$
N=p \cdot U+1 \quad \text { where } p \text { is prime and } p>U
$$

Suppose also that there is a base b that suggests that N is prime, in that

$$
b^{N-1}=1 \bmod N \quad \text { but } \quad \operatorname{gcd}\left(b^{U}-1, N\right)=1
$$

Then N is prime.
The proof will be given in the next section. It is just a matter of Fermat's Little Theorem and some other basic number theory. For now, the idea is that the condtions $N=p U+1$ and $p>U$ say roughly that $p>\sqrt{N}$, while if N is not prime then it has at least one prime factor $q<\sqrt{N}<p$; on the other hand, because $N=1 \bmod p$ we might hope that all of its prime factors satisfy $q=1 \bmod p$ and so also $q>p$, contradiction. In general, integers $N=1 \bmod p$ need not have all their prime factors satisfy $q=1 \bmod p$, but the nature of the base b in the LPL criterion ensures that our N does, as we will show.

As an example of using the criterion, start with

$$
p=1000003
$$

This is small enough that its primality is easily verified by trial division. A candidate prime above $1000 \cdot p$ of the form $p \cdot U+1$ is

$$
N=1032 \cdot p+1=1032003097
$$

And $2^{N-1}=1 \bmod N$ and $\operatorname{gcd}\left(2^{1032}-1, N\right)=1$, so the LPL Criterion is satisfied, and N is prime. Rename it p.

A candidate prime above $10^{9} \cdot p$ of the form $p \cdot U+1$ is

$$
N=p \cdot\left(10^{9}+146\right)+1=1032003247672452163
$$

Again $b=2$ works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above $10^{17} \cdot p$ of the form $p \cdot U+1$ is

$$
N=p \cdot\left(10^{17}+24\right)+1=103200324767245241068077944138851913
$$

Again $b=2$ works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above $10^{34} \cdot p$ of the form $p \cdot U+1$ is

$$
N=p \cdot\left(10^{34}+224\right)+1=10320032476724524106807794413885422
$$

46872747862933999249459487102828513.

Again $b=2$ works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above $10^{60} \cdot p$ of the form $p \cdot U+1$ is

$$
\begin{aligned}
N=p \cdot\left(10^{60}+1362\right)+1= & 10320032476724524106807794413885422 \\
& 468727478629339992494608926912518428 \\
& 801833472215991711945402406825893161 \\
& 06977763821434052434707 .
\end{aligned}
$$

Again $b=2$ works in the LPL Criterion, so N is prime. Again rename it p.

A candidate prime above $10^{120} \cdot p$ of the form $p \cdot U+1$ is

$$
\begin{aligned}
N=p \cdot\left(10^{120}+796\right)+1= & 10320032476724524106807794413885422 \\
& 468727478629339992494608926912518428 \\
& 801833472215991711945402406825893161 \\
& 069777638222555270198542721189019004 \\
& 353452796285107072988954634025708705 \\
& 822364669326259443883929402708540315 \\
& 83341095621154300001861505738026773 .
\end{aligned}
$$

Again $b=2$ works in the LPL Criterion, so N is prime.

6. Proof of the Lucas-Pocklington-Lehmer Criterion

Our data are

- An integer $N>1$, presumably large.
- The prime factors q of N, possibly unknown.
- A prime p, to be used to analyze N.

Obviously, if $q=1 \bmod p$ for each q then also $N=1 \bmod p$.
The converse does not hold in general. For example, take $N=10=2 \cdot 5$ and $p=3$. Then $N=1 \bmod p$ but neither prime factor q of N satisfies $q=1 \bmod p$.

However, the Fermat-Euler Criterion is a partial converse: Let p be prime. Let N be an integer such that

$$
N=1 \bmod p .
$$

If there is a base b such that

$$
b^{N-1}=1 \bmod N \quad \text { and } \quad \operatorname{gcd}\left(b^{(N-1) / p}-1, N\right)=1
$$

then

$$
q=1 \bmod p \quad \text { for each prime divisor } q \text { of } N \text {. }
$$

To prove the Fermat-Euler criterion, let q be any prime divisor of N. Consider the smallest positive integer t such that $b^{t}=1 \bmod q$; that is, t is the order of the base b modulo q. The set of exponents e such that $b^{e}=1 \bmod q$ forms an ideal, making its smallest positive element a generator, which is to say that the exponents e such that $b^{e}=1 \bmod q$ are precisely the multiples of t. We will show that $p \mid q-1$ (i.e., that $q=1 \bmod p$, the desired conclusion) by showing that t is multiplicatively intermediate to p and $q-1$.

The Fermat-Euler hypotheses give $b^{N-1}=1 \bmod q$ and $b^{(N-1) / p} \neq 1 \bmod q$, from which $t \mid N-1$ and $t \nmid(N-1) / p$, and it follows from these that

$$
p \mid t
$$

Also, $b^{q-1}=1 \bmod q$ by Fermat's Little Theorem, and so

$$
t \mid q-1 .
$$

Concatenate the previous two displays to get

$$
p \mid q-1 .
$$

This is the desired result $q=1 \bmod p$.

The Lucas-Pocklington-Lehmer Criterion builds on the Fermat-Euler Criterion by specializing to the case

$$
N=p U+1, \quad U<p
$$

If such an N satisfies the Fermat-Euler criterion then it must be prime. As already explained, otherwise it has a proper prime factor $q \leq \sqrt{N}$, for which $p \mid q-1$ by the Fermat-Euler criterion, but the display says that $p>\sqrt{N-1}$ and so $p>$ $\sqrt{N}-1 \geq q-1$. The inequality $p>q-1$ contradicts the condition $p \mid q-1$, and so no proper prime factor q of N can exist.

Recall the Lucas-Pocklington-Lehmer Criterion:
Suppose that $N=p U+1$ where p is prime and $p>U$. Suppose that there is a base b such that $b^{N-1}=1 \bmod N$ but $\operatorname{gcd}\left(b^{U}-1, N\right)=1$. Then N is prime.
To prove the criterion we need only verify that the N and p here satisfy the FermatEuler criterion, and noting that $U=(N-1) / p$ does the trick.

