
LARGE PRIME NUMBERS

This writeup is modeled closely on a writeup by Paul Garrett. See, for example,

http://www-users.math.umn.edu/~garrett/crypto/overview.pdf

1. Fast Modular Exponentiation

Given positive integers a, e, and n, the following algorithm quickly computes the
reduced power ae modn. (Here xmodn denotes the element of {0, · · · , n− 1} that
is congruent to x modulo n. Note that this usage of xmodn does not denote an
element of Z/nZ because such elements are cosets rather than coset representatives.)

• (Initialize) Set (x, y, f) = (1, a, e).
• (Loop) While f > 0, do as follows:

– if f mod 2 = 0 then replace (x, y, f) by (x, y2 modn, f/2),
– otherwise replace (x, y, f) by (xy modn, y, f − 1).

• (Terminate) Return x.

This algorithm is strikingly efficient both in speed and in space. Especially, the
operations on f (halving it when it is even, decrementing it when it is odd) are
very simple in binary. To see that the algorithm works, represent the exponent e
in binary, say

e = 2g + 2h + 2k, 0 ≤ g < h < k.

The algorithm initializes

(1, a, 2g + 2h + 2k)

squares the middle entry and halves the right entry g times to get

(1, a2
g

, 1 + 2h−g + 2k−g)

multiplies the left entry by the middle entry and decrements the right entry

(a2
g

, a2
g

, 2h−g + 2k−g)

and continues on similarly

(a2
g

, a2
h

, 1 + 2k−h)

(a2
g+2h , a2

h

, 2k−h)

(a2
g+2h , a2

k

, 1)

(a2
g+2h+2k , a2

k

, 0),

and then it returns the first entry, which is indeed ae.
Fast modular exponentiation is not only for computers. For example, to compute

237 mod 149, proceed as follows,

(1, 2; 37)→ (2, 2; 36)→ (2, 4; 18)→ (2, 16; 9)→ (32, 16; 8)

→ (32,−42; 4)→ (32,−24; 2)→ (32,−20; 1)→ ( 105 ,−20; 0).
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2. Fermat Pseudoprimes

Fermat’s Little Theorem states that for any positive integer n,

if n is prime then bn−1 = 1modn for b = 1, . . . , n− 1.

In the other direction, all we can say is that

if bn−1 = 1modn for all b = 1, . . . , n− 1 then n might be prime.

If bn−1 = 1 modn for some particular b ∈ {1, . . . , n− 1} then n is called a Fermat
pseudoprime base b.

There are 669 primes up to 5000, but only two values of n (1729 and 2821) that
are Fermat pseudoprimes base b for b = 2, 3, 5 without being prime. This is a false
positive rate of 0.04%. The false positive rate up to 500000 just for b = 2, 3 is
under 0.01%.

On the other hand, the bad news is that checking more bases b doesn’t reduce the
false positive rate much further. There are infinitely many Carmichael numbers,
numbers n that are Fermat pseudoprimes base b for all b ∈ {1, . . . , n− 1} coprime
to n but are not prime.

Carmichael numbers notwithstanding, Fermat pseudoprimes are reasonable can-
didates to be prime.

3. Strong Pseudoprimes

The Miller–Rabin test on a positive odd integer n and a positive test base b
in {1, . . . , n− 1} proceeds as follows.

• Factor n− 1 as 2sm where m is odd.
• Replace b by bm modn.
• If b = 1 then return the result that n could be prime, and terminate.
• Do the following s times: If b = n − 1 then return the result that n could

be prime, and terminate; otherwise replace b by b2 modn.
• If the algorithm has not yet terminated then return the result that n is

composite, and terminate.

(Slight speedups here: (1) If the same n is to be tested with various bases b then
there is no need to factor n − 1 = 2sm each time; (2) there is no need to com-
pute b2 modn on the sth time through the step in the fourth bullet.)

To understand the Miller–Rabin test, consider a positive odd integer n and factor
n− 1 = 2s ·m where m is odd. Then

X2sm − 1 = (X2s−1m + 1)(X2s−1m − 1)

= (X2s−1m + 1)(X2s−2m + 1)(X2s−2m − 1)

= (X2s−1m + 1)(X2s−2m + 1)(X2s−3m + 1)(X2s−3m − 1)

...

= (X2s−1m + 1)(X2s−2m + 1)(X2s−3m + 1) · · · (Xm + 1)(Xm − 1).

That is, rewriting the left side and reversing the order of the factors of the right
side,

Xn−1 − 1 = (Xm − 1) ·
s−1∏
r=0

(X2rm + 1).



LARGE PRIME NUMBERS 3

Substitute in any base b,

bn−1 − 1 = (bm − 1) ·
s−1∏
r=0

(b2
rm + 1) mod n, b = 1, . . . , n− 1.

If n is prime then bn−1− 1 = 0 mod n for b = 1, . . . , n− 1, and also Z/nZ is a field,
so that necessarily one of the factors on the right side vanishes modulo n as well.
That is, if n is prime then given any base b ∈ {1, . . . , n − 1}, at least one of the
factors

bm − 1, {b2
rm + 1 : 0 ≤ r ≤ s− 1}

vanishes modulo n. So contrapositively, if for some base b ∈ {1, . . . , n− 1} none of
the factors vanishes modulo n then n is composite. Hence the Miller–Rabin test.

A positive integer n that passes the Miller–Rabin test for some b is a strong
pseudoprime base b. For any n, at least 3/4 of the b-values in {1, . . . , n−1} have
the property that if n is a strong pseudoprime base b then n is really prime. But
according to the theory, up to 1/4 of the b-values have the property that n could
be a strong pseudoprime base b but not be prime. In practice, the percentage of
such b’s is much lower. For n up to 500,000, if n is a strong pseudoprime base 2
and base 3 then n is prime.

(Beginning of analysis of false positives.)

Let n be composite. Suppose that n is a strong pseudoprime base b for some b.
Then one of the following congruences holds:

bm = 1 mod n, b2
rm = −1 mod n for r = 0, · · · , s− 1.

Because 2sm = n− 1, any of these congruences immediately implies

bn−1 = 1 mod n,

which is to say that n is a Fermat pseudoprime base b.
Next we show that if n is divisible by p2 for some prime p then there are few

bases b for which n is a Fermat pseudoprime base b. In consequence of the previous
paragraph, there are thus as few or fewer bases b for which n is a strong pseudoprime
base b.

Lemma. Let n be a positive integer. Let x and y be integers such that n is a
Fermat pseudoprime base x and base y,

xn−1 = yn−1 = 1 mod n.

Let p be an odd prime such that p2 | n. If

x = y mod p

then
x = y mod p2.

For the proof, first we show that xp = yp mod p2. This follows quickly from the
factorization

xp − yp = (x− y)(xp−1 + xp−2y + · · ·+ xyp−2 + yp−1),

because the condition x = y mod p makes each factor on the right side a multiple
of p. Second, raise both sides of the relation xp = yp mod p2 to the power n/p to
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get xn = yn mod p2. But because xn = x mod n, certainly xn = x mod p2, and
similarly for y. The result follows.

Proposition. Let p be an odd prime. Let n be a positive integer divisible by p2. Let
B denote the set of bases b between 1 and n−1 such that n is a Fermat pseudoprime
base b, i.e.,

B = {b : 1 ≤ b ≤ n− 1 and bn−1 = 1modn}.

Then

|B| ≤ p− 1

p2
n ≤ 1

4
(n− 1).

To see this, note that the second inequality is elementary to check (to wit,
4(p − 1)n ≤ (p + 1)(p − 1)n = (p2 − 1)n ≤ p2n − p2 = p2(n − 1)), so that we
need only establish the first inequality. Decompose B according to the values of its
elements modulo p,

B =

p−1⊔
d=1

Bd

where

Bd = {b ∈ B : b = dmod p}, 1 ≤ d ≤ p− 1.

For any d such that 1 ≤ d ≤ p − 1, if b1, b2 ∈ Bd then the lemma says that
b1 = b2 mod p2. It follows that |Bd| ≤ n/p2, giving the result.

4. Generating Candidate Large Primes

Given n, a simple approach to finding a candidate prime above 2n is as follows.
Take the first of N = 2n+1, N = 2n+3, N = 2n+5, . . . to pass the following test.

(1) Try trial division for a few small primes. If N passes, continue.
(2) Check whether N is a Fermat pseudoprime base 2. If N passes, continue.
(3) Check whether N is a strong pseudoprime base b as b runs through the first

20 primes.

Any N that passes the test is extremely likely to be prime. And such an N should
appear quickly because the slope of the asymptotic prime-counting function is

d

dx

(
x

log x

)
=

log x− 1

(log x)2
≈ 1

log x
,

so that heuristically a run of log x gives a rise of 1, i.e., the next prime. And indeed,
using only the first three primes in step (3) of the previous test finds the following
correct candidate primes:

The first candidate prime after 1050 is 1050 + 151.
The first candidate prime after 10100 is 10100 + 267.
The first candidate prime after 10200 is 10200 + 357.
The first candidate prime after 10300 is 10300 + 331.
The first candidate prime after 101000 is 101000 + 453.
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5. Certifiable Large Primes

The Lucas–Pocklington–Lehmer Criterion is as follows. Suppose that p a
known prime and that some N = 1 mod p is less than p2 as follows:

N = p · U + 1 where p is prime and p > U.

Suppose also that there is a base b that suggests that N is prime, in that

bN−1 = 1modN but gcd(bU − 1, N) = 1.

Then N is prime.
The proof will be given in the next section. It is just a matter of Fermat’s

Little Theorem and some other basic number theory. For now, the idea is that the
condtions N = pU +1 and p > U say roughly that p >

√
N , while if N is not prime

then it has at least one prime factor q <
√
N < p; on the other hand, because

N = 1 mod p we might hope that all of its prime factors satisfy q = 1 mod p and
so also q > p, contradiction. In general, integers N = 1 mod p need not have all
their prime factors satisfy q = 1 mod p, but the nature of the base b in the LPL
criterion ensures that our N does, as we will show.

As an example of using the criterion, start with

p = 1000003.

This is small enough that its primality is easily verified by trial division. A candidate
prime above 1000 · p of the form p · U + 1 is

N = 1032 · p + 1 = 1032003097.

And 2N−1 = 1 modN and gcd(21032 − 1, N) = 1, so the LPL Criterion is satisfied,
and N is prime. Rename it p.

A candidate prime above 109 · p of the form p · U + 1 is

N = p · (109 + 146) + 1 = 1032003247672452163.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above 1017 · p of the form p · U + 1 is

N = p · (1017 + 24) + 1 = 103200324767245241068077944138851913.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above 1034 · p of the form p · U + 1 is

N = p · (1034 + 224) + 1 =10320032476724524106807794413885422

46872747862933999249459487102828513.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
A candidate prime above 1060 · p of the form p · U + 1 is

N = p · (1060 + 1362) + 1 =10320032476724524106807794413885422

468727478629339992494608926912518428

801833472215991711945402406825893161

06977763821434052434707.

Again b = 2 works in the LPL Criterion, so N is prime. Again rename it p.
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A candidate prime above 10120 · p of the form p · U + 1 is

N = p · (10120 + 796) + 1 =10320032476724524106807794413885422

468727478629339992494608926912518428

801833472215991711945402406825893161

069777638222555270198542721189019004

353452796285107072988954634025708705

822364669326259443883929402708540315

83341095621154300001861505738026773.

Again b = 2 works in the LPL Criterion, so N is prime.

6. Proof of the Lucas–Pocklington–Lehmer Criterion

Our data are

• An integer N > 1, presumably large.
• The prime factors q of N , possibly unknown.
• A prime p, to be used to analyze N .

Obviously, if q = 1 mod p for each q then also N = 1 mod p.

The converse does not hold in general. For example, take N = 10 = 2 · 5 and
p = 3. Then N = 1 mod p but neither prime factor q of N satisfies q = 1 mod p.

However, the Fermat–Euler Criterion is a partial converse: Let p be prime.
Let N be an integer such that

N = 1mod p.

If there is a base b such that

bN−1 = 1modN and gcd(b(N−1)/p − 1, N) = 1

then
q = 1mod p for each prime divisor q of N.

To prove the Fermat–Euler criterion, let q be any prime divisor of N . Consider
the smallest positive integer t such that bt = 1 mod q; that is, t is the order of
the base b modulo q. The set of exponents e such that be = 1 mod q forms an
ideal, making its smallest positive element a generator, which is to say that the
exponents e such that be = 1 mod q are precisely the multiples of t. We will show
that p | q − 1 (i.e., that q = 1 mod p, the desired conclusion) by showing that t is
multiplicatively intermediate to p and q − 1.

The Fermat–Euler hypotheses give bN−1 = 1 mod q and b(N−1)/p 6= 1 mod q,
from which t | N − 1 and t - (N − 1)/p, and it follows from these that

p | t.
Also, bq−1 = 1 mod q by Fermat’s Little Theorem, and so

t | q − 1.

Concatenate the previous two displays to get

p | q − 1.

This is the desired result q = 1 mod p.
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The Lucas–Pocklington–Lehmer Criterion builds on the Fermat–Euler Criterion
by specializing to the case

N = pU + 1, U < p.

If such an N satisfies the Fermat–Euler criterion then it must be prime. As already
explained, otherwise it has a proper prime factor q ≤

√
N , for which p | q − 1

by the Fermat–Euler criterion, but the display says that p >
√
N − 1 and so p >√

N − 1 ≥ q − 1. The inequality p > q − 1 contradicts the condition p | q − 1, and
so no proper prime factor q of N can exist.

Recall the Lucas–Pocklington–Lehmer Criterion:

Suppose that N = pU+1 where p is prime and p > U . Suppose that
there is a base b such that bN−1 = 1modN but gcd(bU − 1, N) = 1.
Then N is prime.

To prove the criterion we need only verify that the N and p here satisfy the Fermat–
Euler criterion, and noting that U = (N − 1)/p does the trick.


