
THE BERNOULLI NUMBERS, POWER SUMS, AND ZETA

VALUES

The Bernoulli numbers arise naturally in the context of computing the power
sums

10 + 20 + · · ·+ n0 = n,

11 + 21 + · · ·+ n1 =
1

2
(n2 + n),

12 + 22 + · · ·+ n2 =
1

6
(2n3 + 3n2 + n),

etc.

Also they appear in Euler’s evaluation of the zeta function ζ(k) at even integers
k ≥ 2, and then of the divergent series ζ(1− k) for the same k-values.
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1. The Bernoulli numbers and power sums

Let n be a positive integer, and introduce notation for the kth power sum from 0
up to n− 1 for any nonnegative integer k,

Sk(n) =

n−1∑
m=0

mk, k ∈ N.

Thus S0(n) = n because 00 = 1, while for k ≥ 1 the term 0k of Sk(n) is 0. In
particular, the second and third of the three summations shown above evaluate
S1(n + 1) and S2(n + 1) but the first is not S0(n + 1). (Taking the power sum
over m from 0 to n − 1 as we are doing, rather than from 1 to n as is perhaps
more natural, leads to the most common contemporary definition of the Bernoulli
numbers, but the italicized parenthetical comments to follow will show that their
definition is almost unchanged if instead the power sum does go from 1 to n.) The
power series having the power sums as its coefficients is their generating function,
dependent on n and on a formal variable t, but gathering together the kth power
sums for all k,

S(n, t) =

∞∑
k=0

Sk(n)
tk

k!
.

1
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Rearrange this double sum to get that S(n, t) equals
∑n−1
m=0

∑∞
k=0(mt)k/k!, which

is the finite geometric sum
∑n−1
m=0 e

mt, having closed form (ent − 1)/(et − 1), and
then divide and multiply by t to get a product of two terms,

S(n, t) =
ent − 1

t

t

et − 1
.

(If the power sum is taken instead over m from 1 to n then this is multiplied by et,
and so the second term becomes tet/(et − 1), which is t/(1− e−t).) The first term
has the power series expansion

ent − 1

t
=

∞∑
i=1

(nt)i

i!t
=

∞∑
i=0

ni+1

i+ 1

ti

i!
.

The second term is independent of n. It is a power series in t whose coefficients are
by definition the Bernoulli numbers, constants that can be computed once and for
all as will be explained further below,

t

et − 1
=

∞∑
j=0

Bj
tj

j!
.

(If the power sum is taken instead over m from 1 to n then t/(1− e−t) rather than
t/(et−1) is defined as the power series with coefficients Bj/j!; because t/(1−e−t)−
t/(et−1) = t, the only effect of this change on the Bernoulli numbers is to increase
B1 by 1.) Again rearrange the generating function, this time by using the general
formula

∞∑
i=0

ai
ti

i!

∞∑
j=0

bj
tj

j!
=

∞∑
k=0

 k∑
j=0

(
k

j

)
ak−jbj

 tk

k!

or, equivalently, summing over diagonal segments, to get

S(n, t) =

∞∑
i=0

ni+1

i+ 1

ti

i!

∞∑
j=0

Bj
tj

j!
=

∞∑
k=0

 k∑
j=0

(
k

j

)
nk+1−j

k + 1− j
Bj

 tk

k!
.

This rewrites as

S(n, t) =

∞∑
k=0

 1

k + 1

k∑
j=0

(
k + 1

j

)
Bjn

k+1−j

 tk
k!

=

∞∑
k=0

 1

k + 1

k+1∑
j=0

(
k + 1

j

)
Bjn

k+1−j −Bk+1

 tk
k!
.

Thus, if we define the `th Bernoulli polynomial as

B`(X) =
∑̀
j=0

(
`

j

)
BjX

`−j , ` ≥ 0,

which again can be computed once and for all, or if we define them all at once by
a generating function,

teXt

et − 1
=

∞∑
`=0

B`(X)
t`

`!
,
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then matching the coefficients of the definition of S(n, t) as
∑∞
k=0 Sk(n)tk/k! and

of the last expansion of S(n, t), three displays back, shows that the kth power sum
is a polynomial of degree k + 1 in n,

Sk(n) =
1

k + 1
(Bk+1(n)−Bk+1), k ≥ 0.

Because k is fixed and we imagine n to be large or indeterminate, this expression
of Sk(n) as a sum of k terms is a notable simplication of its original expression as
a sum of n terms. The polynomial Sk(X) has leading term Xk+1/(k + 1), second
term B1X

k, and lowest term BkX, because

Bk+1(X)−Bk+1 = Xk+1 +

(
k + 1

1

)
B1X

k + · · ·+
(
k + 1

k

)
BkX.

(If the power sum Sk(n) is taken instead over m from 1 to n then the boxed formula
is unchanged but Sk(n) and Bk+1(n) and Bk+1 are redefined; when k ≥ 1 both sides
are bigger by nk, the left side because it has gained the term nk and lost 0k, and the
right side because B1 is incremented; when k = 0 both versions of the boxed formula
say that S0(n) = n.)

The first few Bernoulli numbers are B0 = 1, B1 = −1/2 (or B1 = 1/2 if Sk(n) is
taken from 1 to n), B2 = 1/6, and B3 = 0, and so the first few Bernoulli polynomials
are

B0(X) = 1,

B1(X) = X − 1

2
,

B2(X) = X2 −X +
1

6
,

B3(X) = X3 − 3

2
X2 +

1

2
X.

For example, the boxed formula gives

12 + 22 + · · ·+ n2 = S2(n+ 1) =
B3(n+ 1)−B3

3
,

and indeed the right side works out to (2n3 + 3n2 + n)/6, as at the beginning of
this writeup. (The reader can check that in the variant setup where the power sum
is taken from 1 to n, we have 12 + 22 + · · · + n2 = S2(n) = (B3(n) − B3)/3, and
because now B3(X) = X3 + 3

2X
2 + 1

2 this again gives (2n3 + 3n2 + n)/6.)

2. Computing the Bernoulli numbers

Because the Bernoulli numbers are defined by the formal power series expansion

t

et − 1
=

∞∑
k=0

Bk
tk

k!
,

they are calculable in succession by matching coefficients in the power series identity
(again from

∑
j ajt

j/j!
∑
k bkt

k/k! =
∑
n(
∑
j+k=n

(
n
k

)
ajbk)tn/n!)

t = (et − 1)

∞∑
k=0

Bk
tk

k!
=

∞∑
n=1

(
n−1∑
k=0

(
n

k

)
Bk

)
tn

n!
,
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i.e., the nth parenthesized sum is 1 if n = 1 and 0 otherwise. That is, B0 = 1 and
then (

n

0

)
B0 +

(
n

1

)
B1 + · · ·+

(
n

n− 1

)
Bn−1 = 0, n ≥ 2.

Thus the Bernoulli numbers are rational. Further, because the expression

t

et − 1
+
t

2
=
t

2
· e

t + 1

et − 1
=
t

2
· e

t/2 + e−t/2

et/2 − e−t/2

is even, it follows that B1 = −1/2 and Bk = 0 for all other odd k. For example,

1 =

(
1

0

)
B0 so B0 = 1 (again)

0 =

(
2

0

)
1 +

(
2

1

)
B1 so B1 = −1/2 (again)

0 =

(
3

0

)
1−

(
3

1

)
1

2
+

(
3

2

)
B2 so B2 = 1/6

and we know that B3 = 0, and

0 =

(
5

0

)
1−

(
5

1

)
1

2
+

(
5

2

)
1

6
+

(
5

4

)
B4 so B4 = −1/30,

and similarly B6 = 1/42 and so on.

3. Denominators of the Bernoulli numbers

We prove a result first shown by von Staudt and Clausen, independently, in 1840:

Bk +
∑

p:p−1|k

1

p
is an integer for k = 0, 1, 2, 4, 6, 8, . . . .

For k = 0, the assertion is that B0 ∈ Z (no positive multiple of any p− 1 is 0), and
for k = 1 it is that B1 + 1/2 ∈ Z, and both of these are true by observation. So we
may take k ≥ 2, k even. As an example, B12 = −691/2730 and the primes p such
that p− 1 | 12 are 2, 3, 5, 7, 13, and one can confirm that −691/2730 + 1/2 + 1/3 +
1/5 + 1/7 + 1/13 = 1.

To prove the boxed statement, let k ≥ 2 be even. As explained in section 1, the
relation Sk(X) = 1

k+1 (Bk+1(X)−Bk+1) is

Sk(X) =
Xk+1

k + 1
+B1X

k + · · ·+ k

2
Bk−1X

2 +BkX.

For any prime p and positive integer e this gives

p−eSk(pe) =
pke

k + 1
+B1p

(k−1)e + · · ·+ k

2
Bk−1p

e +Bk,

from which

(1) Bk − p−eSk(pe) is p-integral in Q for large e.

With Bk and p−eSk(pe) related, we next relate p−eSk(pe) and p−1Sk(p), thus relat-
ing Bk and p−1Sk(p). For any integer d ≥ 2, each of 0, 1, . . . , pd − 1 uniquely takes
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the form r + qpd−1 with 0 ≤ r < pd−1 and 0 ≤ q < p, and so, using the binomial
theorem for the first congruence to follow,

Sk(pd) =

pd−1−1∑
r=0

p−1∑
q=0

(r + qpd−1)k

≡
pd−1−1∑
r=0

p−1∑
q=0

(rk + krk−1qpd−1) (mod pd)

= p

pd−1−1∑
r=0

rk + kpd−1
pd−1−1∑
r=0

rk−1
p−1∑
q=0

q

= pSk(pd−1) +
k

2
(p− 1)pd

pd−1−1∑
r=0

rk−1 (with
k

2
∈ Z)

≡ pSk(pd−1) (mod pd).

Consequently,

p−dSk(pd)− p−(d−1)Sk(pd−1) is integral for each d ≥ 2.

Telescope this result for d = 2, . . . , e for any e ≥ 2 to get

p−eSk(pe)− p−1Sk(p) is integral for each e ≥ 2.

Combine (1) and this to get that

(2) Bk − p−1Sk(p) is p-integral in Q.

Now, Sk(p) modulo p is the geometric sum
∑p−2
i=0 g

ik with g a generator, giving

Sk(p) ≡

{
−1 if p− 1 | k

0 if p− 1 - k

}
(mod p).

Thus p−1(Sk(p) + 1) is integral if p−1 | k and p−1Sk(p) is integral if p−1 - k. This
combines with (2) to give{

Bk + p−1

Bk

}
is p-integral in Q if

{
p− 1 | k
p− 1 - k

}
.

Finally, if p and p′ are distinct primes then p−1 is p′-integral in Q, and so

Bk +
∑

p:p−1|k

p−1 is p-integral in Q for all p,

making it an integer, as claimed.
This argument is due to Witt, as presented early in the book Local Fields by

Cassels. Note that all occurrences of is integral in the argument could be replaced
the weaker is p-integral in Q; that is, the argument is essentially p-adic until the
p-adic results for all p are gathered at the last step.



6 THE BERNOULLI NUMBERS, POWER SUMS, AND ZETA VALUES

4. The Bernoulli numbers and zeta values

Euler famously evaluated the infinite negative power sums

ζ(k) =

∞∑
n=1

n−k, k ≥ 2 even,

with k understood to be an integer, and then used his functional equation for ζ to
evaluate the divergent series ζ(1−k) for those same k, the latter zeta values simpler
than the former. We skim the ideas here, necessarily invoking an expansion of the
cotangent function, the functional equation for ζ, and the symmetry formula and
Legendre duplication formula for the gamma function.

To compute ζ(k) for even k ≥ 2, first note an identity that we have essentially
seen already above,

πz cotπz = πiz
eπiz + e−πiz

eπiz − e−πiz
= πiz +

2πiz

e2πiz − 1
.

The right side fits into the definition of the Bernoulli numbers, including the lone
nonzero odd Bernoulli number B1 = −1/2, giving

(3) πz cotπz = πiz +
∑
k≥0

(2πi)k

k!
Bkz

k =
∑
k≥0
even

(2πi)k

k!
Bkz

k.

But also the cotangent has a second expansion,

πz cotπz = 1 + z
∑
n≥1

(
1

z − n
+

1

z + n

)
= 1− 2

∑
n≥1

z2

n2
· 1

1− z2/n2
.

Although this expansion plausibly reproduces the cotangent, the fact that it does
so is not trivial. Nonetheless, taking the expansion as granted, it is

(4) πz cotπz = 1− 2
∑
n,e≥1

z2e

n2e
= 1− 2

∑
k≥2
even

ζ(k)zk.

Because the two power series expansions (3) and (4) of πz cotπz must match,

ζ(k) = − (2πi)k

2 k!
Bk, k ≥ 2 even.

In particular ζ(2) = π2/6, ζ(4) = π4/90, and ζ(6) = π6/945.
Alternatively to the approach taken here, one can obtain the boxed formula

by complex contour integration, and then the second expansion of the cotangent
follows.
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Now we go from ζ(k) to ζ(1 − k) for k ≥ 2 even. The computation that for
Re(s) > 0,

Γ(s) =

∫ 1

0

e−tts
dt

t
+

∫ ∞
1

e−tts
dt

t

=
∑
n≥0

(−1)n

n!

∫ 1

0

ts+n−1 dt+

∫ ∞
1

e−tts
dt

t

=
∑
n≥0

(−1)n

n!(s+ n)
+

∫ ∞
1

e−tts
dt

t

shows that Γ(s) is the sum of two expressions, the first of which extends meromor-
phically from Re(s) > 0 to C and the second of which extends analytically to C. So
overall, Γ extends meromorphically to C with a simple pole of residue (−1)n/n! at
each nonpositive integer −n ≤ 0. The functional equation for the completed zeta
function, featuring the completed gamma function,

π−(1−s)/2Γ( 1−s
2 )ζ(1− s) = π−s/2Γ( s2 )ζ(s), s ∈ C,

after being multiplied through by Γ( s+1
2 ) combines with the gamma function iden-

tities

Γ(s)Γ(1− s) =
π

sin(πs)
(symmetry)

and

Γ
(
s
2

)
Γ
(
s+1
2

)
= π

1
2 21−sΓ(s) (Legendre duplication formula)

to give (exercise)

ζ(1− s) = 2(2π)−sΓ(s) cos(πs2 )ζ(s).

Now for s = k with k ≥ 2 an even integer, so that Γ(s) = (k − 1)! and cos(πs2 ) =

(−1)k/2, substitute the boxed value of ζ(k) above to get

ζ(1− k) = −2(2π)−k(k − 1)!(−1)k/2
(2πi)k

2 k!
Bk,

and almost everything cancels,

ζ(1− k) = −Bk
k
, k ≥ 2 even.

This is tidier than the value of ζ(k), with no power of π and no factorial. For
example, ζ(−1) = −1/12, ζ(−3) = 1/120, ζ(−5) = −1/252, etc. For elaborate
computations with the zeta function and its variants that have similar functional
equations, it is an indispensable gain of ease—and of likely-correct results—to move
to the tidy divergent region of the functional equation, work there, and then take
the answer back to the region of convergence.

5. The Bernoulli numbers and zeta values by contour integration

For Re(s) > 1 compute that

Γ(s)n−s =

∫ ∞
t=0

e−nt(nt)s
d(nt)

nt
· n−s =

∫ ∞
t=0

e−ntts
dt

t
, n = 1, 2, 3, . . . ,
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and then passing a sum through an integral and using the formula
∑
n≥1 r

n =

1/(r−1 − 1) for |r| < 1 gives∑
n≥1

Γ(s)n−s =

∫ ∞
t=0

∑
n≥1

e−ntts
dt

t
=

∫ ∞
t=0

ts

et − 1

dt

t
.

That is,

Γ(s)ζ(s) =

∫ ∞
t=0

ts

et − 1

dt

t
, Re(s) > 1.

Here the condition Re(s) > 1 is required for the integral to converge at its left
endpoint, but it converges for all complex s at its right end. Now let the Hankel
contour or keyhole contour Hε traverse the top side of the positive real axis from
+∞ in to some small ε, then a counterclockwise circle of radius ε about 0, then
the bottom side of the positive real axis from ε back out to ∞, and consider the
complex integral ∫

Hε

zs

ez − 1

dz

z
.

This integral is an entire function of the complex variable s, and it is independent
of ε for 0 < ε < 2π. Because z has argument 0 on the inward portion of Hε and
argument 2π on the outward portion, and zs = |z|sei arg(z)s, while the integral over
the circle is roughly εRe(s)−1, the value of this integral is, letting ε go to 0,∫

Hε

zs

ez − 1

dz

z
= (e2πis − 1)

∫ ∞
t=0

ts

et − 1

dt

t
= (e2πis − 1)Γ(s)ζ(s).

For s = 2, 3, 4, . . . this says only that the left integral is 0, but for other s with
Re(s) > 1, it says that

ζ(s) =
1

Γ(s)(e2πis − 1)

∫
Hε

zs

ez − 1

dz

z
, Re(s) > 1, s /∈ Z.

In fact this formula gives values for ζ(s) for all complex s other than the positive
integers; we have just given the second of the two continuation arguments for ζ in
Riemann’s 11-page paper. In particular this formula gives calculable values for ζ(s)
where s is a nonpositive integer, as follows. Whereas for Re(s) > 1 the integrals
over the two rays of Hε differ by a multiplicative constant rather than canceling,
and the integral over the circular part of Hε goes to 0 in the limit, for nonpositive
integer s the ray integrals will cancel while the integral over the circle will contribute
a residue.

For s ∼ 1 − k with k ∈ {1, 2, 3, . . . } we have on the right side of the previous
display, noting that e2πis = e2πi(s+k−1) with s+ k − 1 small,

Γ(s) ∼ (−1)k−1

(k − 1)!(s+ k − 1)
and e2πis − 1 ∼ 2πi(s+ k − 1),

so that, making a limit tacit,

1

Γ(1− k)(e2πi(1−k) − 1)
=

(−1)k−1(k − 1)!

2πi
.

Also, for s = 1− k the inward and outward portions of
∫
Hε

zs

ez−1
dz
z cancel because

for x > 0 the quantities (xei2π)s = xsei2πs and xs are equal. The integral over the
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counterclockwise circle around 0 gives 2πiRes0(f) where f(z) = z−k/(ez − 1), and
because

z−k

ez − 1
= z−k−1

z

ez − 1
= z−k−1

∑
`≥0

B`
`!
z`

the residue at 0 is Bk/k!. Assemble these observations to obtain a value for ζ(1−k),

ζ(1− k) =
(−1)k−1(k − 1)!

2πi
2πi

Bk
k!

,

which is to say,

ζ(1− k) = (−1)k−1
Bk
k
, k ≥ 1.

For k = 1, this gives ζ(0) = −1/2. For k ≥ 2 even, this reproduces the formula
ζ(1− k) = −Bk/k from the previous section, with no need to know ζ(k) first. For
k ≥ 3 odd, this gives ζ(−2) = ζ(−4) = · · · = 0.

The quantity on the right side of the boxed equality is a bit more simply −Bk/k
for k ≥ 2 but not for k = 1. It would be −Bk/k for k = 1 as well if we were to
use the alternate definition of the Bernoulli numbers from section 1, which gives
B1 = 1/2 rather than B1 = −1/2. So here is an instance where the other definition
is arguably more natural.

The methods of this section extend to give the values L(χ, 1−k) of any Dirichlet
L-function at the nonnegative integers in terms of more general Bernoulli numbers
Bχ,k associated to the Dirichlet character χ.

6. Zeta values without Bernoulli numbers

The values of ζ(k) for even k ≥ 2 can be expressed finitely in closed form, with no
reference to the Bernoulli numbers, if one is willing to admit an unwieldy formula
with complex roots of unity instead. The formula has no real utility—we work it
out only to show that it can be done—and so this section is entirely optional.

Consider an entire function of a complex variable z, understood to take the
value 1 at z = 0, and well known to have both a product expansion and a Taylor
series expansion that are valid for all z ∈ C,

ϕ(z) =
sin(πz)

πz
=

{∏
n≥1(1− z2/n2)∑
j≥0(−1)jπ2jz2j/(2j + 1)!.

The equality of the product and the series is

1− ζ(2)z2 + · · · = 1− (π2/6)z2 + · · · ,

from which ζ(2) = π2/6.
Formulas for ζ(4), ζ(6), ζ(8), . . . are obtained similarly. For any positive inte-

ger d, let ρ2d = eπi/d be the first complex 2dth root of unity and define

fd(z) =

d−1∏
i=0

ϕ(ρi2dz).

The product expansion of ϕ gives, rearranging a double product at the first equality,

fd(z) =
∏
n≥1

d−1∏
i=0

(
1− ρidz

2

n2

)
=
∏
n≥1

(
1− z2d

n2d

)
= 1− ζ(2d)z2d + · · · .
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And the Taylor series expansion of ϕ gives

fd(z) =

d−1∏
i=0

d∑
ji=0

(−1)ji
ρijid

(2ji + 1)!
π2jiz2ji + · · · .

Because the two expressions for fd(z) match, the sum-expansion of fd(z) must also
begin with the constant term 1 and then zeros until its z2d term,

fd(z) = 1 + (−1)d
∑

j0+j1+···+jd−1=d

ρ
j1+2j2+···+(d−1)jd−1

d

(2j0 + 1)!(2j1 + 1)! · · · (2jd−1 + 1)!
π2dz2d + · · · .

Because the coefficients of the z2d terms must match, ζ(2d) is an elementary sum

of
(
2d−1
d−1

)
terms,

ζ(2d) = (−1)d−1
∑

j0+j1+···+jd−1=d

ρ
j1+2j2+···+(d−1)jd−1

d

(2j0 + 1)!(2j1 + 1)! · · · (2jd−1 + 1)!
π2d

And we may sum only the real parts of the summands. This formula is unaffected
if ρd is replaced by a different primitive complex dth root of unity, and so it shows
that ζ(2d) is a rational multiple of π2d.

The boxed formula for ζ(2d) rapidly becomes intractable, asymptotically hav-

ing O(4d/
√
d) terms involving ever-higher roots of unity. The formula ζ(2d) =

(−1)d−1 22d−1B2d

(2d)! π2d is much more efficient. But still we can test the boxed formula

for small values of d. As just above, for d = 1 it says that

ζ(2) = (−1)0
11

3!
π2 =

π2

6
.

For d = 2 it says that

ζ(4) = (−1)1
(

(−1)2+2·0

5!
+

(−1)1+2·1

3!2
+

(−1)0+2·2

5!

)
π4

= −
(

2

5!
− 1

3!2

)
π4 =

(
1

36
− 1

60

)
π4 =

π4

90
.

For d = 3 the vectors j = (j0, j1, j2) and the summands that they determine are
(omitting π6)

(3, 0, 0), (0, 3, 0), (0, 0, 3), (1, 1, 1) :
3

7!
+

1

3!3

(2, 1, 0), (0, 2, 1), (1, 0, 2) :
3ρ3
5!3!

(1, 2, 0), (2, 0, 1), (0, 1, 2) :
3ρ23
5!3!

.

Because ρ3 + ρ23 = −1, the sum is

ζ(6) =

(
3

7!
+

1

3!3
− 3

5!3!

)
π6 =

π6

945
.
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For d = 4 we freely may consider only the terms whose numerators ij1+2j2+3j3 =
(−1)j2ij1−j3 are real, which is to say that j1 and j3 have the same parity. The rele-
vant vectors (j0, j1, j2, j3) and the summands that they determine are (omitting π8)

(4, 0, 0, 0), (0, 4, 0, 0), (0, 0, 4, 0), (0, 0, 0, 4) :
4

9!

(3, 0, 1, 0), (0, 3, 0, 1), (1, 0, 3, 0), (0, 1, 0, 3) : − 4

7!3!

(2, 2, 0, 0), (2, 0, 2, 0), (2, 0, 0, 2), (0, 2, 2, 0), (0, 2, 0, 2), (0, 0, 2, 2) : − 2

5!2

(2, 1, 0, 1), (1, 2, 1, 0), (0, 1, 2, 1), (1, 0, 1, 2) :
4

5!3!2

(1, 1, 1, 1) : − 1

3!4
.

Because (−1)4−1 = −1 out in front of the sum, we have altogether

ζ(8) =

(
− 4

9!
+

4

7!3!
+

2

5!2
− 4

5!3!2
+

1

3!4

)
π8 =

π8

9450
.

The method here is related to Euler’s first evaluation of ζ(2) through ζ(12) in
1735. The product expansion of the sine function was not yet well established
then, and rather than introduce roots of unity and symmetrize, Euler used algebra
to extract higher zeta values from matched coefficients and lower ones. As an
example in the same spirit, granting the product expansion of the sine function,
the equality of

sin(πz)

πz
= 1− π2z2

6
+
π4z4

120
+ · · ·

and

sin(πz)

πz
=
∏
n≥1

(
1− z2

n2

)
= 1− z2

∑
n

1

n2
+ z4

∑
m<n

1

m2n2
+ · · ·

gives ζ(2) = π2/6, as already noted, and then
∑
m<n 1/(m2n2) = π4/120. Now the

relation

π4

36
= ζ(2)2 =

∑
m,n

1

m2n2
= ζ(4) + 2

∑
m<n

1

m2n2
= ζ(4) +

π4

60

gives

ζ(4) = π4

(
1

36
− 1

60

)
=
π4

90
.

Once Euler did have the product expansion for the sine function, he also had
the series expansion for the cotangent function by logarithmic differentiation, and
therefore he had no need to work further with the product to obtain the values
of ζ(2d). See section III.XVIII of André Weil’s Number Theory: An Approach
Through History for more on Euler and the zeta function.


