A USEFUL LITTLE FACT

Let R and R be commutative rings with multiplicative identity. Suppose that
we have a ring homomorphism that preserves multiplicative identities,

f:R—>§, f(lR):lé

Let n be a positive integer. We will show that the matrix map obtained by applying
f entrywise to n-by-n matrices,

g: Mu(R) — Mu(R),  g([ri]) = [f(riz)],

is a ring homomorphism that preserves multiplicative identities. As such, it restricts
to a group homomorphism

g : GL,(R) — GL,(R),

and the group homomorphism takes the special linear subgroup into the special
linear subgroup,

g:SL,(R) — SLn(}NE).

(Again, to make sure that the notation is clear: f takes ring elements to ring
elements, while g takes matrices to matrices by applying f entrywise.)

The argument is straightforward. First, the map

g Mn(R) — My (R)
is characterized by the property
(g(m))i; = f(mij), meMy(R), i,j€{1,---,n}.
It follows immediately that g preserves matrix sums. Indeed, using the character-

izing property, compute that for any row and column indices i,5 € {1,--- ,n} and
for any matrices a = [a;;] and b = [b;;] in M,,(R),

(9la+10))i; = f((a+b)i5) by the characterizing property of g
= f(ai; + bij) since matrix addition proceeds entrywise
= f(asj) + f(bij) since f preserves scalar addition
= (g(a))ij + (g(b));; by the characterizing property of g.

Since ¢ and j are arbitrary, g(a +b) = g(a) + g(b), i.e., g preserves sums as desired.

Similarly, g preserves matrix products in consequence of f being a ring homomor-

phism. Again using the characterizing property, compute that for any 4,7 and a,b
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as before,

(g(ab))i; = f((ab)i;) by the characterizing property of g
=f <Z aikbkj> by definition of multiplication in M, (R)
k
= Z f(air) f(bg;) Dbecause f is a ring homomorphism
k

= Zg(a)ikg(b)kj by the characterizing property of g
k

= (g9(a)g(b))i; by definition of multiplication in M,, (R).
Since i and j are arbitrary, g(ab) = g(a)g(b), i.e., g preserves products as desired.
Also, since f(1r) = 15, it follows that g(I, r) = I, &
To summarize so far, g : M,(R) — M, (R) is a ring homomorphism that
preserves multiplicative identities.
Next, since

GLn(R) = (Mn(R))™,

and similarly with Rin place of R, and since any ring homomorphism that preserves
multiplicative identities restricts to a homomorphism of multiplicative groups, we
have immediately that g restricts to a homomorphism

g:GL,(R) — Gan(l?E)7

Two comments are relevant here. First, the general argument that any ring homo-
morphism A that preserves multiplicative identities restricts to a homomorphism of
multiplicative groups is

ry =1 = h(z)h(y) = h(zy) = h(1) =1,

so that if  is multiplicatively invertible then so is h(x). Second, the multiplicative
group
GL,(R) = {m € M,,(R) : det(m) € R*}.

consists of the matrices having invertible determinants rather than nonzero deter-
minants. In the context of linear algebra, where the matrix entries are always
elements of a field, all nonzero scalars are invertible, but this condition does not
hold in a general ring.

Next we show that

det(g(m)) = f(det(m)), m € Mn(R).

(The equality has g on the left side since m is a matrix with entries in R, and it
has f on the right side since det m is an element of R.) The displayed identity holds
because the n-by-n determinant is a universal polynomial of the matrix entries,
making the result an immediate consequence of f being a ring homomorphism,
det(g(m)) = det({(g(m));;}) viewing det as a polynomial of the entries
=det({f(mi;)})  rewriting the entries
= f(det({m;;}))  because f is a ring homomorphism

= f(det(m)) returning to det as a function of matrices.
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Especially, the identity combines with the condition f(1g) = 1z to show that g
takes SLy,(R) into SL,(R),

det(g(m)) = f(det(m)) = f(1r) =15, m € SLu(R)

A relevant example on the midterm is that the matrix reduction map
g :SLy(Z) — SLo(Z/NZ)
is a group homomorphism because the scalar reduction map
f:Z—7Z/NZ

is a ring homomorphism that preserves multiplicative identities.
Another example on the midterm is that the map

SLy(Z/p* 7)) — SLo(Z/p°Z)

is a surjective group homomorphism. It is a group homomorphism because in the
successive containments
pTZ CcpZ C 7,

pt17Z is an ideal of Z and a subring of p°Z, which in turn is an ideal of Z, so that
the third ring isomorphism theorem gives

(Z/p* L) (p°L /v L) ~ Zfp°L,  (n+p*T L) +p°L — 4 p°L,
Consequently the following diagram of ring homomorphisms commutes:

Z

Z/p L —— (Z/p*'2) ) (p°Z/p* T L) —— L/p°L.
It follows that the following diagram of group homomorphisms commutes:

SL2(Z)

SLy(Z/p*T117) > SLo(Z/p°Z).
Because the diagram commutes and the right diagonal map surjects (by exercise 2
on the midterm), the map across the bottom surjects.
In a similar vein, the Sun-Ze ring isomorphism
zZ/NZ = 1] z/r°z
pelIN
underlies a ring isomorphism
My (Z/NZ) > MQ( 11 Z/peZ),
pelIN
and then further identifying matrices of vectors with vectors of matrices gives
M2(Z/NZ) = [] Ma(Z/p°Z).
pelIN
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The ring isomorphism restricts to an isomorphism of multiplicative groups,
GLy(z/NZ) = [] GL2(Z/p°Z)
pelIN
that further specializes to a smaller group isomorphism
SLa(Z/NZ) = ] SL2(Z/p°Z).
pelIN



