
MULTILINEAR ALGEBRA: THE EXTERIOR PRODUCT

This writeup is drawn closely from chapter 28 of Paul Garrett’s text Abstract
Algebra, available from Chapman and Hall/CRC publishers and also available
online at Paul Garrett’s web site.

Throughout the writeup, let A be a commutative ring with 1. Every A-module
is assumed to have the unital property that 1A · x = x for all x in the module.

1. Alternating and Skew-Symmetric Multilinear Maps

Definition 1.1. Let M be an A-module. Let k be a positive integer and let

M×k = M × · · · ×M

denote the k-fold product of M with itself, again an A-module. A multilinear map
of A-modules,

φ : M×k −→ X

is alternating if it vanishes whenever any two if its arguments are equal,

φ(· · · ,m, · · · ,m, · · · ) = 0,

and is skew-symmetric if its value is negated whenever any two its arguments are
exchanged,

φ(· · · ,m′, · · · ,m, · · · ) = −φ(· · · ,m, · · · ,m′, · · · ).

Proposition 1.2. Consider a multilinear map of A-modules,

φ : M×k −→ X.

If φ is alternating map then it is skew-symmetric. If φ is skew-symmetric and the
only x ∈ X such that x+ x = 0X is x = 0X then φ is alternating.

Proof. Since only two variables are involved at a time, we may take k = 2. Com-
pute, using only multilinearity, that for all m,m′ ∈M ,

φ(m+m′,m+m′) = φ(m,m) + φ(m,m′) + φ(m′,m) + φ(m′,m′).

If φ is alternating then the relation becomes

0 = φ(m,m′) + φ(m′,m),

showing that φ is skew-symmetric. If φ is skew-symmetric then in particular for
all m ∈M ,

φ(m,m) = −φ(m,m).

Thus φ(m,m) +φ(m,m) = 0 and so φ(m,m) = 0 by our hypothesis on X, showing
that φ is alternating. �
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2. The Exterior Product: Mapping Property and Uniqueness

Definition 2.1 (Mapping Property of the Exterior Product). Let M be an A-
module and let k be a positive integer. The kth exterior product of M over A
is another A-module and an alternating multilinear map to it,

ε : M×k −→
∧k

A
M,

having the following property: For every alternating A-multilinear map from the
cartesian product to an A-module,

φ : M×k −→ X,

there exists a unique A-linear map from the exterior product to the same module,

Φ :
∧k

A
M −→ X,

such that Φ ◦ ε = φ, i.e., such that the following diagram commutes,∧k
AM

Φ

''NNNNNNN

M×k

ε

OO

φ
// X.

Note: In contrast to the fact that various A-modules can be tensored together,
the kth exterior product involves k copies of one A-module.

Proposition 2.2 (Uniqueness of the Exterior Product). Let M be an A-module.
Given two kth exterior products of M over A,

ε1 : M×k −→ E1 and ε2 : M×k −→ E2,

there is a unique A-module isomorphism i : E1 −→ E2 such that i ◦ ε1 = ε2, i.e.,
such that the following diagram commutes,

M×k

ε1

||yyyyyyyyy
ε2

""FFFFFFFFF

E1
i //________ E2.

The proof is virtually identical to several proofs that we have seen before. Indeed,
one can encode a single meta-argument to encompass all of them.

3. The Exterior Product: Existence

Proposition 3.1 (Existence of the Exterior Product). Let M be an A-module and

let k be a positive integer. Then a kth exterior product ε : M×k −→
∧k
AM exists.

Proof. Let τ : M×k −→
⊗k

AM be the kth tensor product of M with itself. Let S

be the A-submodule of
⊗k

AM generated by all monomials

· · · ⊗m⊗ · · · ⊗m⊗ · · ·
in which an element appears more than once. Consider the quotientQ = (

⊗k
AM)/S

and the quotient map

q :
⊗k

A
M −→ Q.
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The claim is that

q ◦ τ : M×k −→ Q is a kth exterior product.

To prove the claim, we must verify the desired mapping property. Thus, consider
any alternating multilinear map of A-modules,

φ : M×k −→ X.

The mapping property of the tensor product
⊗k

AM gives a unique commutative
diagram in which the map Ψ is A-linear,⊗k

AM

Ψ

''OOOOOOO

M×k

τ

OO

φ
// X.

This diagram does not show that τ : M×k −→
⊗k

AM is the exterior product
because τ is not alternating. However, compute that since the diagram commutes
and φ is alternating,

Ψ(· · · ⊗m⊗ · · · ⊗m⊗ · · · , ) = φ(· · · ,m, · · · ,m, · · · ) = 0.

Thus Ψ factors through the quotient Q,⊗k
AM

q
//

Ψ
''OOOOOOOOOOOOO
Q

Φ

��
�
�
�

X.

Concatenate the previous two diagrams and then consolidate to get the desired
diagram,

Q

Φ

��

M×k

q◦τ
77ooooooooooooo φ
// X.

Furthermore, if also Φ̃ ◦ q ◦ τ = φ then Φ̃ ◦ q = Φ ◦ q by the uniqueness property of

the tensor product, and thus Φ̃ = Φ since q surjects.
Finally, q ◦ τ is alternating by the definition of S (exercise). And so the data∧k
AM = Q and ε = q ◦ τ satisfy the exterior product mapping property. �

4. Tangible Descriptions

For any (m1, · · · ,mk) ∈M×k, the image ε(m1, · · · ,mk) ∈
∧k
AM is denoted

m1 ∧ · · · ∧mk.

Some relations in
∧k
AM are

m1 ∧ · · · ∧ (mi +m′i) ∧ · · · ∧mk

= (m1 ∧ · · · ∧mi ∧ · · · ∧mk) + (m1 ∧ · · · ∧m′i ∧ · · · ∧mk),

m1 ∧ · · · ∧ ami ∧ · · · ∧mk = a(m1 ∧ · · · ∧mi ∧ · · · ∧mk),

m1 · · · ∧mi ∧ · · · ∧mi ∧ · · · ∧mk = 0,

m1 · · · ∧mj ∧ · · · ∧mi ∧ · · · ∧mk = −(m1 · · · ∧mi ∧ · · · ∧mj ∧ · · · ∧mk).
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As an application of the mapping property, we prove

Proposition 4.1 (Exterior Product Generators). Let M be an A-module. Then

the exterior product ε : M×k −→
∧k
AM is generated by the monomials m1∧· · ·∧mk

where each mi ∈M . Furthermore, if a set of generators of M over A is {ei} (where

the index set I is well ordered) then a set of generators of
∧k
AM is

{ei1 ∧ · · · ∧ eik : i1 < · · · < ik}.

Proof. Let E =
∧k
AM , let S be the A-submodule of E generated by the monomials,

let Q = E/S be the quotient, and let q : E −→ Q be the quotient map. Also, let
z : M×k −→ Q and Z : E −→ Q be the zero maps. Certainly

Z ◦ ε = z,

but also, since ε(M×k) ⊂ S,

q ◦ ε = z.

Thus the uniqueness statement in the mapping property of the exterior product
gives q = Z. In other words, S is all of E.

As for the second statement in the proposition, the first statement shows that

any monomial in
∧k
AM takes the form of the left side of the equality(∑

i1

ai1ei1

)
∧ · · · ∧

(∑
ik

aikeik

)
=

∑
i1,··· ,ik

ai1 · · · aikei1 ∧ · · · ∧ eik .

That is, the equality shows that any monomial in
∧k
AM is a linear combination

of {ei1∧· · ·∧eik}. By skew symmetry, we may assume that i1 < · · · < ik. Since any

element of
∧k
AM is a linear combination of monomials in turn, we are done. �

Lemma 4.2. Let M be an A-module, not necessarily finitely-generated or free. Let
k and m be positive integers, and let n = k + m. Then there is a unique bilinear
map

β :
∧k

A
M ×

∧m

A
M −→

∧n

A
M

whose action on pairs of monomials is

β(m1 ∧ · · · ∧mk,mk+1 ∧ · · · ∧mn) = m1 ∧ · · · ∧mk ∧mk+1 ∧ · · · ∧mn.

Proof. For any mk+1, · · · ,mn, the map

M×k −→
∧n

A
M, (m1, · · · ,mk) 7−→ m1 ∧ · · · ∧mk ∧mk+1 ∧ · · · ∧mn

is multilinear and alternating, and so it gives rise to a linear map

β1 :
∧k

A
M −→

∧n

A
M, m1 ∧ · · · ∧mk 7−→ m1 ∧ · · · ∧mk ∧mk+1 ∧ · · · ∧mn.

Similarly, for any m1, · · · ,mk, there is a linear map

β2 :
∧m

A
M −→

∧n

A
M, mk+1 ∧ · · · ∧mn 7−→ m1 ∧ · · · ∧mk ∧mk+1 ∧ · · · ∧mn.

Thus the map β = β1 × β2 is bilinear as desired. �

Proposition 4.3 (Exterior Product Rank). Let M be a free A-module of rank n.

Let k be a positive integer. Then
∧k
AM is a free A-module of rank

(
n
k

)
.
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Proof. Let {ei : i = 1, · · · , n} be an A-basis of M , and let {êj : j = 1, · · · , n} be
the dual basis,

êj : M −→ A, êj(ei) =

{
1 if i = j,

0 else.

First take k = n. The previous proposition shows that∧n

A
M = A · e1 ∧ · · · ∧ en,

but the proposition does not show that the right side is free. We need to show
that if a · e1 ∧ · · · ∧ en = 0 then a = 0. Construct a map from M×n to A that
antisymmetrizes over all permutations π ∈ Sn,

φ : M×n −→ A, φ(m1, · · · ,mn) =
∑
π∈Sn

sgn(π)êπ(1)(m1) · · · êπ(n)(mn).

Then clearly φ(e1, · · · , en) = 1. Also, formal verifications confirm that φ is mul-
tilinear and alternating. Thus the mapping property of the nth exterior product
gives a commutative diagram ∧n

AM

Φ

''OOOOOOO

M×n

ε

OO

φ
// A.

Now if a · e1 ∧ · · · ∧ en = 0 in
∧n
AM then a itself must be 0:

a = aφ(e1, · · · , en) = aΦ(e1 ∧ · · · ∧ en) = Φ(a · e1 ∧ · · · ∧ en) = Φ(0) = 0.

This shows that
∧n
AM is free of rank 1 as desired.

If 1 ≤ k < n then assume a linear dependence∑
I

aIeI = 0 in
∧k

A
M,

where the sum is over k-tuples I = (i1, · · · , in) with 1 ≤ i1 < · · · < ik ≤ n and a
typical summand is

aIeI = a(i1,··· ,ik)ei1 ∧ · · · ∧ eik .

For a given multi-index J let eJ ∈
∧n−k
A M denote the exterior product of e1

through en but with eJ removed,

eJ = e1 ∧ · · · ∧ ej1 ∧ · · · ∧ ejk ∧ · · · ∧ en.

Then, using the bilinear map β from the lemma,

0∧nM = β(0∧kM , eJ) = β(
∑
I

aIeI , eJ) =
∑
I

aIβ(eI , eJ) =
∑
I

aIeI ∧ eJ

= ±aJe1 ∧ · · · ∧ en,

so that aJ = 0A as argued a moment ago. �
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5. Exterior Powers of a Map

Consider an A-linear map,

f : M −→M ′.

The map

ε′ ◦ f×k : M×k −→
∧k

A
M ′

is readily seen to be multilinear and alternating. The mapping property of
∧k
AM

thus gives a unique linear map,∧k
AM

f∧k
//___ ∧k

AM
′

M×k

ε

OO

f×k

// (M ′)×k.

ε′

OO

In symbols, the formula for f∧k is

f∧k(m1 ∧ · · · ∧mk) = f(m1) ∧ · · · ∧ f(mk).

6. The Determinant Revisited

Let n be a positive integer, and let M be free of rank n over A. Thus
∧n
AM is

free of rank 1 over A, and so for any A-linear map f : M −→ M , the nth exterior
power

f∧n :
∧n

A
M −→

∧n

A
M, f∧n(m1 ∧ · · · ∧mn) = f(m1) ∧ · · · ∧ f(mn)

is multiplication by some ring element. This element is the determinant of f ,
written det f . Thus

f(m1) ∧ · · · ∧ f(mn) = det f · (m1 ∧ · · · ∧mn) for all m1, · · · ,mn,

where det f ∈ A.
Take a basis β = (e1, · · · , en) of M . For any A-linear map f : M −→M , let the

matrix of f with respect to β have columns m1, · · · ,mn. Write det(m1, · · · ,mn)
for det f . Then since mi = f(ei) for i = 1, · · · , n, the previous display gives

m1 ∧ · · · ∧mn = det(m1, · · · ,mn) e1 ∧ · · · ∧ en.
The n-fold exterior product of module elements e1 ∧ · · · ∧ en on the right side
of the equality is fixed. Because the product m1 ∧ · · · ∧ mn on the left side is
multilinear and alternating as a function of m1, · · · ,mn and equals e1 ∧ · · · ∧ en
when (m1, · · · ,mn) = (e1, · · · , en), the scalar det(m1, · · · ,mn) on the right side
is also multilinear and alternating as a function of m1, · · · ,mn and equals 1 when
(m1, · · · ,mn) = (e1, · · · , en). That is, det f is multilinear, alternating, and nor-
malized as a function of the columns of any matrix of f , which is to say that det f
is indeed the familiar determinant from linear algebra.

Let f, g : M −→ M be A-linear, so that the composition fg : M −→ M is
A-linear as well, and compute that for any m1, · · · ,mn ∈M ,

det(fg) ·m1 ∧ · · · ∧mn = fg(m1) ∧ · · · ∧ fg(mn)

= det f · g(m1) ∧ · · · ∧ g(mn)

= det f det g ·m1 ∧ · · · ∧mn.
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This shows that

det fg = det f det g for all linear f, g : M −→M.

7. Application of the Determinant: Cramer’s Rule

Let A be a commutative ring with 1. Let n be a positive integer. Consider an
n-by-n matrix and two column vectors, all having entries in A,

m =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , x =


x1

x2

...
xn

 , b =


b1
b2
...
bn

 .
The goal is to solve the equation mx = b for x, given m and b.

The matrix-by-vector product mx is a linear combination of the columns of m,
weighted by the entries of x,

mx =
∑
j

cjxj where cj is the jth column of m.

Thus if mx = b then we have for each i ∈ {1, · · · , n}, since the determinant is
multilinear and alternating,

det(c1, · · · , ci−1, b, ci+1, · · · , cn)

= det(c1, · · · , ci−1,
∑
j

cjxj , ci+1, · · · , cn)

=
∑
j

xj det(c1, · · · , ci−1, cj , ci+1, · · · , cn)

= xi det(m).

Thus if det(m) ∈ A× then the solution x of the equation mx = b is uniquely
determined,

xi = det(c1, · · · , ci−1, b, ci+1, · · · , cn) det(m)−1, i = 1, · · · , n.

8. The Classical Adjoint Revisited

In linear algebra, the so-called “classical adjoint” of a square matrix is another
square matrix whose (i, j)th entry is (−1)i+j times the determinant of the original
matrix with its jth row and its ith column deleted. The circumstance that this
bewildering construction is called an adjoint despite seeming unrelated to the usual
definition of the adjoint (〈m∗v, v′〉 = 〈v,mv′〉 for all v, v′), and the fact that the
classical adjoint nearly inverts the original matrix, are typically taken for granted
by the student. This section explains how the name and the properties of the
classical adjoint are perfectly lucid in the context of multilinear algebra.

Let n be a positive integer, and let M be free of rank n over A. Recall the
bilinear pairing

M ×
∧n−1

A
M −→

∧n

A
M

given by

〈m1,m2 ∧ · · · ∧mn〉 = m1 ∧m2 ∧ · · · ∧mn.
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Any A-linear map f : M −→ M has an adjugate A-linear map fadg : M −→ M
defined as the adjoint of f∧(n−1) under the bilinear pairing. That is, the defining
property of the adjugate is that for all m1, · · · ,mn ∈M ,

fadg(m1) ∧m2 ∧ · · · ∧mn = m1 ∧ f∧(n−1)(m2 ∧ · · · ∧mn).

Compute that for any A-linear map f : M −→M and for all m1, · · · ,mn ∈M ,

(fadgf)(m1) ∧m2 ∧ · · · ∧mn = f(m1) ∧ f∧(n−1)(m2 ∧ · · · ∧mn)

= f∧n(m1 ∧m2 ∧ · · · ∧mn)

= det f (m1 ∧m2 ∧ · · · ∧mn)

= (det f ·m1) ∧m2 ∧ · · · ∧mn.

That is,
fadgf : M −→M is multiplication by det f.

Now suppose that the ring A is an integral domain, so that it has a quotient
field k. Suppose also that det f 6= 0 in A. Extend the scalars of M from A to k by
forming the tensor product

M ′ = k ⊗AM.

Then multiplication by det f is is invertible as an endomorphism of M ′, and thus
the relation fadgf = det f · idM ′ shows that so is f , giving

fadg = (det f · idM ′)f−1.

This equality shows that fadg and f commute as endomorphisms of M ′, and so
they commute as endomorphisms of M . Summarizing,

• fadg : M −→ M is defined as the adjoint of f∧(n−1) under the bilinear
pairing of M and

∧n−1
A M .

• fadgf = det f · idM .
• If A is an integral domain and det f 6= 0 then fadg commutes with f .

9. A Uniqueness Result Revisited

Let A be a PID. Consider a finitely generated free A-module and a submodule,

F = Ae1 ⊕ · · · ⊕Aem ⊕ · · · ⊕Aen,
S = a1e1 ⊕ · · · ⊕ amem,

where
a1 ⊃ · · · ⊃ am.

(Of course it is tacit that the ideals are nonzero.) With exterior products available,
we can give an intrinsic structural description of the ideals a1, · · · , am in terms of F
and S. Thus F and S uniquely determine the ideals.

Already a1 has been described intrinsically. It is the image of S under a functional
F −→ A, and it contains the image of S under every functional F −→ A. Next
consider the exterior products

F∧2 = A(e1 ∧ e2)⊕ · · · ⊕A(en−1 ∧ en),

S∧2 = a1a2(e1 ∧ e2)⊕ · · · ⊕ am−1am(em−1 ∧ em).

Certainly a1a2 is the image of S∧2 under a functional F∧2 −→ A, and because
it contains all ideals aiaj , it contains the image of S∧2 under every functional
F∧2 −→ A. Thus a1a2 is intrinsic to F and S, and consequently the second
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elementary divisor a2 is intrinsic to F and S as well, being the annihilator of a1/a1a2.
The argument for the remaining elementary divisors is more of the same, going up
to F∧m = Ae1 ∧ · · · ∧ em⊕· · · and S∧m = a1 · · · ame1 ∧ · · · ∧ em. Note that m itself
is described intrinsically as the highest exponent of a nonzero exterior power of S.

Now we can see that the ingredients of our earlier uniqueness proof—alternating
multilinear maps, in particular determinants of square subblocks that never ref-
erenced the part of the larger module F indexed by basis elements beyond the
dimension of S—are natural in the multilinear algebra environment, and we under-
stand that their role in the earlier proof was to create just-enough exterior product
structure to obtain the desired result.

10. Example: Filling Out a Matrix

Let our basic data be a PID A and positive integers k and n with k < n. Suppose
that we are given are given a k-by-n matrix with entries in A,

[aij ](1,··· ,k)×(1,··· ,n).

Let the determinants of the corresponding k-by-k minors of the matrix be

dJ = det([aij ](1,··· ,k)×J), J = (j1, · · · , jk), j1 ≤ · · · ≤ jk.

Assume that the determinants are altogether coprime,

gcd({dJ}) = 1.

The problem is to add n−k rows to the matrix and obtain a resulting n-by-n matrix
having determinant 1. If the given k rows were simply the standard basis vectors
e1 through ek then the problem would be trivial. We will see that the structure
theorem for finitely generated modules over a PID provides a coordinate system in
which the problem is indeed trivial as just described.

To begin the solution, write the k rows of the given matrix as vectors, letting
(e1, · · · , en) denote the standard basis of A⊕n as usual,

fi =

n∑
j=1

aijej , i = 1, · · · , k.

Since gcd({dJ}) = 1, the vectors are linearly independent. View A⊕n as a rank-
n free A-module F and consider the rank-k submodule S spanned by the given
vectors, i.e., by the rows of the given matrix,

F =

n⊕
j=1

Aej , S =

k⊕
i=1

Afi.

The kth exterior powers F∧k and S∧k are, using the notations eJ = ej1 ∧ · · · ∧ ejk ,
I = (1, · · · , k), and fI = f1 ∧ · · · ∧ fk,

F∧k =
⊕
J

AeJ , S∧k = AfI .

Recall the minor-determinants dJ . We claim that in fact

fI =
∑
J

dJeJ .
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(For example, when k = 2 and n = 3 this is the formula for the “cross product”
from vector calculus.) Indeed, each term cJeJ of the product fI = f1 ∧ · · · ∧ fk is
the product f1,J ∧· · ·∧fk,J where each fi,J =

∑
j∈J ai,jej is the J-projection of fi.

The coefficient of the latter product is a multilinear, alternating, and normalized
function of the rows of [aij ](1,··· ,k)×J , and so it is the determinant dJ . Thus the
previous two displays combine to say

F∧k =
⊕
J

AeJ , S∧k = A ·
∑
J

dJeJ .

Next, the most recent display and the given condition gcd({dJ}) = 1 combine to
show that the quotient F∧k/S∧k is torsion-free: the crux of the argument is that
for any a, b, {cJ} in A with a 6= 0,

a
∑

cJeJ = b
∑

dJeJ =⇒ a | acJ = bdJ for all J

=⇒ a | b since gcd({dJ}) = 1

=⇒ b = aβ for some β

=⇒
∑

cJeJ = β
∑

dJeJ by cancellation.

Now return to the originalA-modules F and S. The structure theorem for finitely
generated modules over a PID provides (as constructively as the gcd algorithm in A
is constructive) a basis (g1, · · · , gn) of F and nonzero ideals a1 ⊃ · · · ⊃ ak of A such
that

F =

n⊕
j=1

Agj , S =

k⊕
i=1

aigi.

Consequently, using the notations gJ = gj1 ∧ · · · ∧ gjk and gI = g1 ∧ · · · ∧ gk,

F∧k =
⊕
J

AgJ , S∧k = a1 · · · akgI ,

so that
F∧k/S∧k = (A/a1 · · · ak)gI ⊕

⊕
J 6=I

AgJ .

Since this quotient is torsion free, in fact a1 = · · · = ak = A. That is,

F =

n⊕
j=1

Agj , S =

k⊕
j=1

Agj .

But also S =
⊕k

j=1Afj from before. Thus (f1, · · · , fk, gk+1, · · · , gn) is a basis

of A⊕n. After scaling gn by an element of A× if necessary, the n-by-n matrix with
these basis elements as its rows has determinant 1, and the problem is solved.


