
MULTILINEAR ALGEBRA: THE TENSOR PRODUCT

This writeup is drawn closely from chapter 27 of Paul Garrett’s text Abstract
Algebra, available from Chapman and Hall/CRC publishers and also available
online at Paul Garrett’s web site.

Throughout the writeup, let A be a commutative ring with 1. Every A-module
is assumed to have the unital property that 1A ·x = x for all x in the module. Also,
the reader is alerted that A-modules are not assumed to be free unless so stated.

1. The Tensor Product: Mapping Property and Uniqueness

Definition 1.1 (Mapping Property of the Tensor Product). Let M and N be A-
modules. Their tensor product over A is another A-module and a bilinear map
from the product of M and N to it,

τ : M ×N −→M ⊗A N,

having the following property: For every A-bilinear map from the product to an
A-module,

φ : M ×N −→ X,

there exists a unique A-linear map from the tensor product to the same module,

Φ : M ⊗A N −→ X,

such that Φ ◦ τ = φ, i.e., such that the following diagram commutes,

M ⊗A N
Φ

((QQQQQQQ

M ×N

τ

OO

φ
// X.

That is, the one bilinear map τ : M ×N −→M ⊗A N reduces all other bilinear
maps out of M ×N to linear maps out of M ⊗A N .

Proposition 1.2 (Uniqueness of the Tensor Product). LetM and N be A-modules.
Given two tensor products of M and N over A,

τ1 : M ×N −→ T1 and τ2 : M ×N −→ T2,

there is a unique A-module isomorphism i : T1 −→ T2 such that i ◦ τ1 = τ2, i.e.,
such that the following diagram commutes,

M ×N
τ1

{{wwwwwwwww
τ2

##HHHHHHHHH

T1
i //_________ T2.

Proof. Since T1 and T2 are both tensor products over A, there are unique A-linear
maps

i : T1 −→ T2 such that i ◦ τ1 = τ2
1
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and

j : T2 −→ T1, such that j ◦ τ2 = τ1.

We want to show that i is an isomorphism.
The composition

j ◦ i : T1 −→ T1

is an A-linear map such that

(j ◦ i) ◦ τ1 = j ◦ (i ◦ τ1) = j ◦ τ2 = τ1.

The definition says that there is a unique such A-linear map, and certainly the
identity map on T1 fits the bill. Thus j ◦ i is the identity map on T1. Similarly, i ◦ j
is the identity map on T2. �

2. The Tensor Product: Existence

Proposition 2.1 (Existence of the Tensor Product). Let M and N be A-modules.
Then a tensor product τ : M ×N −→M ⊗A N exists.

Proof. Let i : M ×N −→ F be the free A-module on the set M ×N . (Note: F is
enormous.) While F does have the desired tensor product property of converting
maps out of M×N into linear maps, F is not the tensor product because the map i
is not bilinear, is not even a map of algebraic structures. On the other hand, the
maps φ : M ×N −→ X that F converts to linear maps are completely general, not
necessarily bilinear, and so we can collapse the structure of F somewhat and still
retain enough of its behavior to convert bilinear maps into linear ones as desired.
To collapse F appropriately, let S be its A-submodule generated by its elements
that measure the failure of i to be bilinear,

i(m+m′, n)− i(m,n)− i(m′, n)

i(am, n)− a i(m,n)

i(m,n+ n′)− i(m,n)− i(m,n′)
i(m, an)− a i(m,n)

 where


m,m′ ∈M
n,n′ ∈ N

a ∈ A

 .

Form the quotient Q = F/S and take the quotient map,

q : F −→ Q.

The composition q ◦ i is bilinear since i is bilinear up to S, while q is linear and
kills S. For example,

(q ◦ i)(m+m′, n) = q(i(m+m′, n))

= q(i(m,n) + i(m′, n) + s) where s ∈ S
= q(i(m,n)) + q(i(m′, n)) + q(s)

= (q ◦ i)(m,n) + (q ◦ i)(m′, n).

So now, to show that a tensor product is

q ◦ i : M ×N −→ Q,

we must verify that it uniquely converts bilinear maps out of M×N to linear maps.
So consider any bilinear map of A-modules,

φ : M ×N −→ X.
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The mapping property of the free module F gives a unique commutative diagram
in which the map Ψ is A-linear,

F

Ψ

((PPPPPPPP

M ×N

i

OO

φ
// X.

Furthermore, Ψ kills S because the diagram commutes and φ is bilinear. For
example,

Ψ
(
i(m+m′, n)− i(m,n)− i(m′, n)

)
= (Ψ ◦ i)(m+m′, n)− (Ψ ◦ i)(m,n)− (Ψ ◦ i)(m′, n)

= φ(m+m′, n)− φ(m,n)− φ(m′, n)

= 0,

and similarly for the other generators of S as well. Thus Ψ factors through the
quotient Q,

F
q

//

Ψ
&&NNNNNNNNNNNNN Q

Φ

��
�
�
�

X.

The map Φ is linear because Ψ and q are linear and q surjects. (Since Φ is not a
composition of the other two maps, this point may deserve a moment’s thought.)
Concatenate the previous two diagrams and then consolidate to get the desired
diagram,

Q

Φ

��

M ×N

q◦i
66nnnnnnnnnnnnnn φ
// X.

Furthermore, if also Φ̃◦q◦i = φ then Φ̃◦q = Φ◦q by the uniqueness property of the

free module, and thus Φ̃ = Φ since q surjects. In sum, the A-module M ⊗AN = Q
and the bilinear map τ = q ◦ i satisfy the tensor product mapping property. �

3. Tangible Descriptions

For any (m,n) ∈M ×N , the image τ(m,n) ∈M ⊗AN is denoted m⊗ n. Since
τ is bilinear, some relations in M ⊗A N are

(m+m′)⊗ n = m⊗ n+m′ ⊗ n,
(am)⊗ n = a(m⊗ n) = m⊗ (an),

m⊗ (n+ n′) = m⊗ n+m⊗ n′,
(a+ a′)(m⊗ n) = a(m⊗ n) + a′(m⊗ n),

and so on.
As an application of the mapping property, we prove

Proposition 3.1 (Tensor Product Generators). LetM and N be A-modules. Then
the tensor product τ : M ×N −→ M ⊗A N is generated by the monomials m ⊗ n
where m ∈M and n ∈ N . Furthermore, if a set of generators of M over A is {mi}



4 MULTILINEAR ALGEBRA: THE TENSOR PRODUCT

and a set of generators of N over A is {nj} then a set of generators of M ⊗A N
is {mi ⊗ nj}.

Proof. Let T = M ⊗A N , let S be the A-submodule of T generated by the mono-
mials, let Q = T/S be the quotient, and let q : T −→ Q be the quotient map. Also,
let z : M ×N −→ Q and Z : T −→ Q be the zero maps. Certainly

Z ◦ τ = z,

but also, since τ(M ×N) ⊂ S,

q ◦ τ = z.

Thus the uniqueness statement in the mapping property of the tensor product gives
q = Z. In other words, S is all of T .

As for the second statement in the proposition, the first statement shows that
any monomial in M ⊗A N takes the form of the left side of the equality(∑

i

aimi

)
⊗
(∑

j

ãjnj

)
=
∑
i,j

aiãjmi ⊗ nj .

That is, the equality shows that any monomial in M ⊗A N is a linear combination
of {mi ⊗ nj}. Since any element of M ⊗A N is a linear combination of monomials
in turn, we are done. �

As an example of using the previous proposition, let m and n be positive integers.
We will show that

Z/mZ⊗Z Z/nZ ≈ Z/gZ where g = gcd(m,n).

In particular, and perhaps surprisingly, if gcd(m,n) = 1 then Z/mZ ⊗Z Z/nZ is
zero.

Indeed, since Z/mZ is generated by 1 modm, and Z/nZ is generated by 1 modn,
the proposition says that Z/mZ⊗ZZ/nZ is generated in turn by 1⊗1 (now denoting
the cosets by their representatives). Thus Z/mZ ⊗Z Z/nZ is cyclic, i.e., it is a
quotient of Z. Next, write

g = km+ `n.

Then

g(1⊗ 1) = (km+ `n)(1⊗ 1) = km⊗ 1 + 1⊗ `n = 0⊗ 1 + 1⊗ 0 = 0.

Thus multiplication by g annihilates Z/mZ⊗Z Z/nZ, making the tensor product a
quotient of Z/gZ. On the other hand, the map

Z/mZ× Z/nZ −→ Z/gZ, (xmodm, ymodn) 7−→ xymod g

is well defined because

(x+mZ)(y + nZ) = xy + xnZ + ymZ +mnZ ⊂ xy + gZ,

and it is bilinear, and it surjects. The mapping property of the tensor product thus
gives a surjection from Z/mZ⊗Z Z/nZ to Z/gZ.
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4. Multiplicativity of Rank

Lemma 4.1. Let i : S −→ M and j : T −→ N be free A-modules. For any set
map from the product of the sets to an A-module,

φ : S × T −→ X,

there exists a unique A-bilinear map from the product of the free modules to the
same module,

ϕ : M ×N −→ X,

such that ϕ ◦ (i, j) = φ, i.e., such that the following diagram commutes,

M ×N
ϕ

((PPPPPPP

S × T

(i,j)

OO

φ
// X.

Proof. At most one such ϕ exists. Indeed, for any t ∈ T , the condition

ϕ(i(s), j(t)) = φ(s, t) for all s ∈ S

determines ϕ on M × {j(t)} since i : S −→ M is free and ϕ is linear in its first
argument. And for any m ∈M , the values ϕ(m, j(t)) as t varies in T determine ϕ
on {m} ×N since j : T −→ N is free and ϕ is linear in its second argument.

As usual, the uniqueness argument determines the construction. For each fixed
t ∈ T , the map φ(·, t) : S −→ X factors through i : S −→M ,

φ(·, t) = `(i(·), j(t)) where `(·, j(t)) : M −→ X is linear.

(Note that `(·, n) is not defined for general n, only for n = j(t) where t ∈ T .) For
any fixed m ∈M , the map

`(m, j(·)) : T −→ X

factors through j : T −→ N ,

`(m, j(·)) = ϕ(m, j(·)) where ϕ(m, ·) : N −→ X is linear.

View ϕ(m,n) as a function of its parameter m along with its argument n,

ϕ : M ×N −→ X.

Thus

ϕ(i(s), j(t)) = `(i(s), j(t)) = φ(s, t) for all (s, t) ∈ S × T .

In other words, we have a unique commutative diagram

M ×N
ϕ

((PPPPPPPPPPPPPP

S × T

(i,j)

OO

φ
// X.

The map ϕ is linear in its second component, and the relation ϕ(m, j(t)) =
`(m, j(t)) for all m and any given t says that also ϕ is linear in its first component
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when its second component takes the form j(t), so in fact ϕ is linear in its first
component overall,

ϕ(m+m′, n)

= ϕ(m+m′,
∑
t∈T

atj(t)) substituting for n

=
∑

at ϕ(m+m′, j(t)) since ϕ(m+m′, ·) is linear

=
∑

at(ϕ(m, j(t)) + ϕ(m′, j(t)) since ϕ(·, j(t)) is linear

=
∑

atϕ(m, j(t)) +
∑

atϕ(m′, j(t)) by the distributive law in X

= ϕ(m,
∑

atj(t)) + ϕ(m′,
∑

atj(t)) since ϕ(m, ·) and ϕ(m′, ·) are linear

= ϕ(m,n) + ϕ(m′, n) substituting n.

�

Proposition 4.2 (Multiplicativity of Rank). Let i : S −→M and j : T −→ N be
free A-modules. Let τ : M ×N −→M ⊗A N be the tensor product map. Then

τ ◦ (i, j) : S × T −→M ⊗A N, (s, t) 7−→ i(s)⊗ j(t)

is again a free A-module. Thus

rankA(M ⊗A N) = rankA(M) · rankA(N).

Remark: In contrast to the initial construction of the tensor product from a
free module, this proposition constructs a free module from a tensor product. The
encapsulation free(S × T ) = free(S)⊗A free(T ) of the proposition is in contrast to
the result free(S t T ) = free(S)× free(T ) from the writeup on free modules.

Proof. Let X be an A-module, and consider a set map φ : S × T −→ X. By the
lemma, there exists a unique bilinear map ϕ : M×N −→ X such that the following
diagram commutes,

M ×N
ϕ

((PPPPPPPPPPPPPP

S × T

(i,j)

OO

φ
// X.

Now the tensor product mapping property gives a commutative diagram

M ×N τ //

ϕ
))RRRRRRRRRRRRRRRR M ⊗A N

Φ

��
�
�
�

X,

where Φ is linear. Concatenate with the previous diagram to get the desired com-
mutativity property of Φ,

M ⊗A N

Φ

��

S × T

τ◦(i,j)
66lllllllllllll φ
// X.
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To show that any linear Φ : M ⊗AN −→ X such that Φ◦ τ ◦ (i, j) = φ is unique,
note that ϕ = Φ ◦ τ : M ×N −→ X is bilinear and satisfies ϕ ◦ (i, j) = φ. By the
lemma ϕ is unique, and then also Φ is unique by nature of the tensor product. �

5. Invariance of Rank

Proposition 5.1 (Invariance of Rank Under Change of Ring). Let A ⊂ B be a
containment of rings with 1A = 1B. Let i : S −→ F be a free A-module, and let
τ : B × F −→ B ⊗A F be the tensor product. Then

k : S −→ B ⊗A F, s 7−→ τ(1B , i(s)) = 1B ⊗ i(s)
is a free B-module of the same rank. Here the B-module structure of B ⊗A F is

b(b′ ⊗m) = (bb′)⊗m.

Remark: The proposition and others like it hold if rather than the containment
A ⊂ B we have a homomorphism α : A −→ B of rings-with-unit with α(1A) = 1B .
We will discuss this issue later in the handout.

Remark: This proposition again constructs a free module from a tensor product.
This time the encapsulation might be freeB(S) = B ⊗A freeA(S).

Proof. Consider any set-map from S to a B-module,

φ : S −→ X.

We want the usual diagram involving a B-linear map Φ : B ⊗A F −→ X.
View X as an A-module. Because i : S −→ F is a free A-module, we have a

diagram

F

Ψ

&&NNNNNNN

S

i

OO

φ
// X,

where Ψ is A-linear. To incorporate the domain of the A-bilinear map τ : B×F −→
B ⊗A F into the diagram, introduce a map that makes reference to the B-module
structure of X,

Γ : B × F −→ X, Γ(b,m) = bΨ(m).

To see that Γ is A-bilinear, compute that for a ∈ A and b, b′ ∈ B and m,m′ ∈ F ,

Γ(b+ b′,m) = (b+ b′)Ψ(m) = bΨ(m) + b′Ψ(m) = Γ(b,m) + Γ(b′,m),

Γ(ab,m) = abΨ(m) = aΓ(b,m),

Γ(b,m+m′) = bΨ(m+m′) = bΨ(m) + bΨ(m′) = Γ(b,m) + Γ(b,m′),

Γ(b, am) = bΨ(am) = abΨ(m) = aΓ(b,m).

Also introduce the map

j : S −→ B × F, s 7−→ (1B , i(s)).

Now a diagram that essentially repeats the previous one, but with the desired
product at the upper left corner, commutes as well,

B × F
Γ

((PPPPPPP

S

j

OO

φ
// X.
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The mapping property of the tensor product gives a commutative diagram

B × F τ //

Γ

((RRRRRRRRRRRRRRR B ⊗A F

Φ

��
�
�
�

X

where Φ is A-linear. And so concatenating the diagrams gives (recalling the map k
from the statement of the proposition)

B ⊗A F

Φ

��

S

k

66nnnnnnnnnnnnnn φ
// X.

We need to show that Φ is B-linear. Recall from the statement of the proposition
that the B-module structure of B ⊗A F is b(b′ ⊗m) = (bb′)⊗m. Now compute,

Φ(b(b′ ⊗m)) = Φ((bb′)⊗m) by the structure of B ⊗A F
= Γ(bb′,m) because Γ = Φ ◦ τ
= (bb′)Ψ(m) by definition of Γ

= b(b′Ψ(m)) by the structure of B ⊗A F
= bΓ(b′,m) by definition of Γ

= bΦ(b′ ⊗m) because Γ = Φ ◦ τ .

Finally, we need to show that Φ is unique. Given a set-map φ : S −→ X
where X is a B-module, and given a B-linear map Φ : B ⊗A F −→ X such that
Φ ◦ τ ◦ (1B × i) = φ, let Γ = Φ ◦ τ : B × F −→ X. Then Γ is B-linear in its first
argument. For example, remembering that b⊗m denotes τ(b,m),

Γ(bb̃,m) = Φ(bb̃⊗m) = Φ(b(b̃⊗m)) = bΦ(b̃⊗m) = bΓ(b̃,m).

Similarly Γ is A-linear in its second argument. The values

Γ(1B , i(s)) = Φ(1B ⊗ i(s)) = φ(s)

are determined by φ. Consequently, so is Γ overall in consequence of the linearity
of Γ in each of its arguments,

Γ(b,
∑

asi(s)) =
∑

asbΓ(1B , i(s)).

Because Γ is A-bilinear, the mapping property of the tensor product B⊗AF shows
that the B-map Φ compatible with Γ is unique. In sum, the map Γ determined by
any Φ compatible with φ is unique to φ, and Φ is unique to Γ, altogether making
Φ unique to φ. �

Note that

B ⊗A F = {b(1⊗m) : b ∈ B,m ∈ F},
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and the algebra of B ⊗A F involves rules such as

b((1⊗m) + (1⊗m′)) = b(1⊗m) + b(1⊗m′),
(b+ b′)(1⊗m) = b(1⊗m) + b′(1⊗m),

(bb′)(1⊗m) = b(b(1⊗m)),

b(1⊗m) = 1⊗ bm if and only if b ∈ A.
That is, if we think of F as containing an independent copy Ai(s) of A for each
element s of the generating set S, then correspondingly B ⊗A F contains an inde-
pendent copy B(1⊗ i(s)) of B for each s.

As an example, the complex number system

C = R× Ri = {x+ yi : x, y ∈ R}
is a free R-module of rank 2. Näıvely converting it to a C-module gives

{z + wi : z, w ∈ C} = C,
a free C-module whose rank is only 1 due to dependence among the generators once
the ring of scalars is enlarged. However, converting it to a C-module via the tensor
product gives

C⊗R (R× Ri) = C(1⊗ 1)× C(1⊗ i),
a free rank-2 C-module that acquires its rank and its basis naturally from the
original rank-2 R-module, with no accidental collapsing.

Similarly, consider a field F = Q(α) where α is algebraic over Q. Let f(X) ∈
Q[X] be the minimal monic polynomial over Q satisfied by α. Thus f is irreducible
over Q and

F ∼= Q[X]/〈f(X)〉.
As a polynomial over R (rather than over Q), f has real roots and pairs of complex
conjugate roots, which is to say that it factors into a product of linear polynomials
and irreducible quadratic polynomials,

f(X) =

r∏
i=1

Li(X)

s∏
j=1

Qj(X) in R[X].

The tensor product R⊗Q F decomposes correspondingly,

R⊗Q F ∼= R[X]/〈f(X)〉 ∼=
∏
i

R[X]/〈Li(X)〉
∏
j

R[X]/〈Qj(X)〉 ∼= Rr × Cs.

(For example, R ⊗Q Q(
√

2) ∼= R2 whereas R(
√

2) = R.) The natural map F −→
R ⊗Q F thus gives rise to the so-called canonical embedding F −→ Rr × Cs of
algebraic number theory.

6. The Tensor Product of Maps

Consider two A-linear maps,

f : M −→M ′, g : N −→ N ′.

The map

τ ′ ◦ (f × g) : M ×N −→M ′ ⊗A N ′, (m,n) 7−→ f(m)⊗ g(n)

is readily seen to be bilinear. For example,

f(m+m′)⊗ g(n) = (f(m) + f(m′))⊗ g(n) = f(m)⊗ g(n) + f(m′)⊗ g(n).
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The mapping property of M ⊗A N gives a unique linear map,

M ⊗A N
f⊗g
//___ M ′ ⊗A N ′

M ×N

τ

OO

f×g
// M ′ ×N ′.

τ ′

OO

In symbols, the formula for f ⊗ g is

(f ⊗ g)(m⊗ n) = f(m)⊗ g(n).

7. Tensor Product Formation as Left-Adjoint Induction

We have been working with a ring-with-identity A. Introduce now a second
ring-with-identity B and a homomorphism

α : A −→ B, 1A 7−→ 1B .

Thus B is an A-algebra under the rule

a · b = α(a)b, a ∈ A, b ∈ B.

And similarly any B-module N also has the structure of an A-module,

a� n = α(a) · n, a ∈ A, n ∈ N.

In practice we drop α from the notation and write ab and an, tacitly understanding
that the previous two displays are really what is meant. Especially, when A is a
subring of B (with 1A = 1B), the inclusion map α is naturally omitted. In other
contexts, e.g., α : Z −→ Z/nZ, a bit more information is left out of the notation
when we drop α, but the resulting gain in tidiness is worthwhile.

Although we may view every B-module as an A-module, and every B-module
map as an A-module map, in both cases by forgetting some of the full B-action
and instead restricting it to the A-action, strictly speaking a B-module viewed as
an A-module is not the same algebraic structure as the original B-module. That
is, we have a forgetful functor or restriction functor,

ResBA : {B-modules} −→ {A-modules},

ResBA : {B-module maps} −→ {A-module maps}.

Although the restriction functor does nothing, in the sense that

ResBAN = N as an abelian group for all B-modules N,

ResBAg = g as an abelian group map for all B-module maps g,

still ResBAN emphatically does not fully equal N since they are algebraic structures

of different types, and similarly ResBAg does not fully equal g. Still a person could
easily wonder whether there is any point to the forgetful functor.

There is. Its use is to help describe a more interesting left-adjoint induction
functor,

IndBA : {A-modules} −→ {B-modules},

IndBA : {A-module maps} −→ {B-module maps}.
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Here if f : M −→ M ′ is an A-module map then its left-adjoint induced B-module
map is a map between the induced B-modules,

IndBAf : IndBAM −→ IndBAM
′,

and if f̃ : M ′ −→M ′′ is a second A-module map then the induced B-module map
of the composition is the composition of the induced B-module maps,

IndBA(f̃ ◦ f) = (IndBA f̃) ◦ (IndBAf).

We want three properties to hold for the left-adjoint induction functor.

• The left-adjoint induction functor should be a left-adjoint of restriction:
For every A-module M and B-module N there is an abelian group
isomorphism

iM,N : HomB(IndBAM,N)
∼−→ HomA(M,ResBAN).

• The left-adjoint induction functor should be natural in M :
For every A-module map f : M ′ −→ M and every B-module N ,
there is a commutative diagram

HomB(IndBAM,N)
iM,N

//

−◦IndB
Af

��

HomA(M,ResBAN)

−◦f
��

HomB(IndBAM
′, N)

iM′,N
// HomA(M ′,ResBAN)

where “−◦” denotes precomposition.
• And the left-adjoint induction functor should be natural in N :

For every A-module M and every B-module map g : N −→ N ′,
there is a commutative diagram

HomB(IndBAM,N)
iM,N

//

g◦−
��

HomA(M,ResBAN)

ResBAg◦−
��

HomB(IndBAM,N ′)
iM,N′

// HomA(M,ResBAN
′)

where “◦−” denotes postcomposition.

The reader is warned that left-adjoint induction is absolutely not standard usage.

Theorem 7.1 (Tensor Product Formation is Left-Adjoint Induction). Let A and B
be rings-with-unit, and let α : A −→ B be a ring homomorphism such that α(1A) =
1B. The tensor product

B ⊗A · :{A-modules} −→ {B-modules}, M 7−→ B ⊗AM,

idB ⊗A · :{A-module maps} −→ {B-module maps}, f 7−→ idB ⊗A f

is a left-adjoint of restriction, is natural in M , and is natural in N .

Proof. Define

iM,N : HomB(B ⊗AM,N) −→ HomA(M,ResBAN)

by the formula

(iM,NΦ)(m) = Φ(1⊗m), m ∈M,
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and define

jM,N : HomA(M,ResBAN) −→ HomB(B ⊗AM,N)

by the formula

(jM,Nφ)(b⊗m) = b φ(m), b ∈ B, m ∈M.

Here the product b φ(m) uses the original structure of N as a B-module, even

though not all of that structure is used in our understanding of ResBAN as an A-
module. Then i and j are readily seen to be abelian group homomorphisms, and
(all the symbols meaning what they must)

(j(iΦ))(b⊗m) = b (iΦ)(m) = bΦ(1⊗m) = Φ(b⊗m)

while

(i(jφ))(m) = (jφ)(1⊗m) = 1 · φ(m) = φ(m).

Thus iM,N is an isomorphism.
For naturality in M , compute that for every A-module map f : M ′ −→ M and

every B-module map Φ : B ⊗AM −→ N , for any m′ ∈M ′,

(iM ′,N (Φ ◦ (idB ⊗ f)))(m′) = (Φ ◦ (idB ⊗ f))(1⊗m′)
= Φ(1⊗ f(m′))

= (iM,NΦ)(f(m′))

= ((iM,NΦ) ◦ f)(m′).

Thus iM ′,N (Φ ◦ (idB ⊗ f)) = (iM,NΦ) ◦ f .
For naturality in N , compute that for every B-module map Φ : B ⊗AM −→ N

and every B module map g : N −→ N ′, for any m ∈M ,

(iM,N ′(g ◦ Φ))(m) = (g ◦ Φ)(1⊗m)

= g(Φ(1⊗m))

= ResBAg((iM,NΦ)(m))

= (ResBAg ◦ (iM,NΦ))(m).

Thus iM,N ′(g ◦ Φ) = ResBAg ◦ (iM,NΦ). �

For an example, let k be a field and V a vector space over k. Let K be a
superfield of k. Proposition 5.1 says that

dimK(K ⊗k V ) = dimk(V ),

and even that:

If {ej} is a basis of V over k then {1K ⊗ ej} is a basis of K ⊗k V over K.

Furthermore, we have seen that for every vector space W over K,

HomK(K ⊗k V,W ) ≈ Homk(V,ResKk (W )).

Thus this special case of left-adjoint induction is understandably referred to as
extension of scalars.
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8. The Multiple Tensor Product

Let n ≥ 2, and let M1, · · · ,Mn be A-modules. The n-fold tensor product

τ : M1 × · · · ×Mn −→M1 ⊗A · · · ⊗AMn where τ is n-linear

can be characterized by a mapping property summarized in a diagram similar to
Definition 1.1,

M1 ⊗A · · · ⊗AMn

Φ

**VVVVVVVVVVV

M1 × · · · ×Mn

τ

OO

φ
// X,

in which φ is any n-linear A-map and Φ is linear.
The n-fold tensor product can be constructed as before. Specifically, consider

the free A-module
i : M1 × · · · ×Mn −→ F,

and let S be the A-submodule of F generated by all elements of the form

i(· · · ,mi +m′i, · · · )− i(· · · ,mi, · · · )− i(· · · ,m′i, · · · ),
i(· · · , ami, · · · )− a i(· · · ,mi, · · · ),

Consider the quotient Q = F/S and the quotient map q : F −→ Q. Then the
n-fold tensor product is

q ◦ i : M1 × · · · ×Mn −→ Q.

The n-fold tensor product of maps is formed similarly to the binary tensor prod-
uct of maps as well,

(f1 ⊗ · · · ⊗ fn)(m1 ⊗ · · · ⊗mn) = f1(m1)⊗ · · · ⊗ fn(mn).

It is a matter of routine to verify that there is a natural isomorphism

(M1 ⊗AM2)⊗AM3
∼−→M1 ⊗AM2 ⊗AM3

under which for all A-linear maps

fi : Mi −→M ′i , i = 1, 2, 3,

there is a commutative diagram

(M1 ⊗AM2)⊗AM3
//

(f1⊗Af2)⊗Af3

��

M1 ⊗AM2 ⊗AM3

f1⊗Af2⊗Af3

��

(M ′1 ⊗AM ′2)⊗AM ′3 // M ′1 ⊗AM ′2 ⊗AM ′3.

And similarly for M1⊗A (M2⊗AM3). That is, the formation of tensor products is
associative.


