MULTILINEAR ALGEBRA: THE TENSOR PRODUCT

This writeup is drawn closely from chapter 27 of Paul Garrett’s text Abstract
Algebra, available from Chapman and Hall/CRC publishers and also available
online at Paul Garrett’s web site.

Throughout the writeup, let A be a commutative ring with 1. Every A-module
is assumed to have the unital property that 14-2 = x for all x in the module. Also,
the reader is alerted that A-modules are not assumed to be free unless so stated.

1. THE TENSOR PRODUCT: MAPPING PROPERTY AND UNIQUENESS

Definition 1.1 (Mapping Property of the Tensor Product). Let M and N be A-
modules. Their tensor product over A is another A-module and a bilinear map
from the product of M and N to it,

T:MXN-—M®®4sN,

having the following property: For every A-bilinear map from the product to an
A-module,

¢: M x N — X,

there exists a unique A-linear map from the tensor product to the same module,
P MRy N — X,

such that ® o7 = ¢, i.e., such that the following diagram commutes,

M®a N

~

MxN—2  3x

That is, the one bilinear map 7: M X N — M ®4 N reduces all other bilinear
maps out of M X N to linear maps out of M ®4 N.

Proposition 1.2 (Uniqueness of the Tensor Product). Let M and N be A-modules.
Given two tensor products of M and N over A,

T MXxN-—Ty and 7o: M XN — Ts,

there is a unique A-module isomorphism i : Ty — Ty such that i o 71 = 7o, i.e.,
such that the following diagram commutes,

Proof. Since Ty and T5 are both tensor products over A, there are unique A-linear
maps
i:17y — Ty such that tom =7
1
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and
j: Ty — Ty, such that jorm = 7y.
We want to show that ¢ is an isomorphism.
The composition

joi: Ty — T
is an A-linear map such that
(joi)orp=jo(iom)=jom =T].
The definition says that there is a unique such A-linear map, and certainly the

identity map on T fits the bill. Thus jo¢ is the identity map on 7. Similarly, ¢oj
is the identity map on T5. O

2. THE TENSOR PRODUCT: EXISTENCE

Proposition 2.1 (Existence of the Tensor Product). Let M and N be A-modules.
Then a tensor product 7: M X N — M ® 4 N exists.

Proof. Let i : M x N — F be the free A-module on the set M x N. (Note: F is
enormous.) While F' does have the desired tensor product property of converting
maps out of M x N into linear maps, F' is not the tensor product because the map i
is not bilinear, is not even a map of algebraic structures. On the other hand, the
maps ¢ : M x N — X that F converts to linear maps are completely general, not
necessarily bilinear, and so we can collapse the structure of F' somewhat and still
retain enough of its behavior to convert bilinear maps into linear ones as desired.
To collapse F' appropriately, let S be its A-submodule generated by its elements
that measure the failure of 7 to be bilinear,

i(m+m',n) —i(m,n) —i(m’,n)

, _ m,m’ € M
i(am,n) —ai(m,n)
_ . , , where n,n € N
i(m,n+n")—i(m,n) —i(m,n")

ac A

i(m,an) — ai(m,n)
Form the quotient @@ = F'/S and take the quotient map,
q: F— Q.

The composition ¢ o4 is bilinear since i is bilinear up to S, while ¢ is linear and
kills S. For example,

(qoi)(m+m',n) = q(i(
i(m,n) +i(m’,n)+s) wherese€S
= q(i(m,n)) + q(i(m',n)) + q(s)
= (goi)(m,n) + (goi)(m’,n).
So now, to show that a tensor product is
goi: M x N —Q,

we must verify that it uniquely converts bilinear maps out of M x N to linear maps.
So consider any bilinear map of A-modules,

¢: M x N — X.
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The mapping property of the free module F' gives a unique commutative diagram
in which the map ¥ is A-linear,

~
T

MxN—% "3x
Furthermore, ¥ kills S because the diagram commutes and ¢ is bilinear. For
example,
U (i(m+m',n) —i(m,n) —i(m’,n))
=Woi)m+m',n)—(Voi)(m,n)— (¥oi)(m', n)
= ¢(m+m/,n) — ¢(m,n) — ¢(m’,n)
B ()7
and similarly for the other generators of S as well. Thus ¥ factors through the
quotient @,
F—* 0
X.

The map P is linear because ¥ and ¢ are linear and ¢ surjects. (Since ® is not a
composition of the other two maps, this point may deserve a moment’s thought.)
Concatenate the previous two diagrams and then consolidate to get the desired
diagram,

Q

qoi J/

i}
MxN—2 X

Furthermore, if also &)o~qoz' = ¢ then ® oq = ®ogq by the uniqueness property of the
free module, and thus ® = ® since ¢ surjects. In sum, the A-module M ®4 N = Q
and the bilinear map 7 = ¢ o 7 satisfy the tensor product mapping property. O

3. TANGIBLE DESCRIPTIONS

For any (m,n) € M x N, the image 7(m,n) € M ® 4 N is denoted m ® n. Since
7 is bilinear, some relations in M ® 4 N are

(m+m')@n=men+m'@n,
(am)®@n=a(m®n)=m® (an),
m@n+n)=men+maen,
(a+d)man)=almen)+ad(men),

and so on.
As an application of the mapping property, we prove

Proposition 3.1 (Tensor Product Generators). Let M and N be A-modules. Then
the tensor product T : M X N — M ® 4 N is generated by the monomials m ® n
where m € M andn € N. Furthermore, if a set of generators of M over A is {m;}
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and a set of generators of N over A is {n;} then a set of generators of M @ N
is {m; ® n;}.

Proof. Let T = M ®4 N, let S be the A-submodule of T' generated by the mono-
mials, let Q@ = T/S be the quotient, and let ¢ : T — @ be the quotient map. Also,
let z: M x N — Q and Z : T — @ be the zero maps. Certainly

ZoT =z,
but also, since 7(M x N) C S,
qoT =z

Thus the uniqueness statement in the mapping property of the tensor product gives
q = Z. In other words, S is all of T.

As for the second statement in the proposition, the first statement shows that
any monomial in M ® 4 N takes the form of the left side of the equality

(Zaimi> ® <Z&jn3) = Zai&jmi Qn;.
( J L2}

That is, the equality shows that any monomial in M ® 4 N is a linear combination
of {m; ® n;}. Since any element of M ®4 N is a linear combination of monomials
in turn, we are done. O

As an example of using the previous proposition, let m and n be positive integers.
We will show that

Z/mZ Q7 Z/nZ ~ Z]/gZ where g = ged(m,n).

In particular, and perhaps surprisingly, if ged(m,n) = 1 then Z/mZ &z Z/nZ is
ZETO.

Indeed, since Z/mZ is generated by 1 mod m, and Z/nZ is generated by 1 mod n,
the proposition says that Z/mZ®z7Z/nZ is generated in turn by 1®1 (now denoting
the cosets by their representatives). Thus Z/mZ ®z Z/nZ is cyclic, i.e., it is a
quotient of Z. Next, write

g=km+In.
Then
g1@1l)=(km+m)(1e)=kme1+10Mm=0®1+1®0=0.

Thus multiplication by g annihilates Z/mZ ®z Z/nZ, making the tensor product a
quotient of Z/gZ. On the other hand, the map

Z/mZ X Z/nZ — Z/gZ, (xmodm,ymodn)+— xymodg
is well defined because
(x + mZ)(y + nZ) = xy + xnZ + ymZ + mnZ C zy + g7Z,

and it is bilinear, and it surjects. The mapping property of the tensor product thus
gives a surjection from Z/mZ ®z Z/nZ to Z/gZ.
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4. MULTIPLICATIVITY OF RANK

Lemma 4.1. Leti: S — M and j : T —> N be free A-modules. For any set
map from the product of the sets to an A-module,

o: ST — X,

there exists a unique A-bilinear map from the product of the free modules to the
same module,

p:MxN—X,
such that @ o (i,7) = @, i.e., such that the following diagram commutes,

M x N

~
~
(mﬁ ~F
~
~

SxT—"—3x

Proof. At most one such ¢ exists. Indeed, for any ¢ € 7, the condition
p(i(s),4(t)) = ¢(s,t) forall seS

determines ¢ on M x {j(t)} since i : S — M is free and ¢ is linear in its first
argument. And for any m € M, the values ¢(m, j(t)) as ¢ varies in T determine ¢
on {m} x N since j: T — N is free and ¢ is linear in its second argument.

As usual, the uniqueness argument determines the construction. For each fixed
t € T, the map ¢(-,t) : S — X factors through i : S — M,

o(-,t) =£(i(-),5(t)) where £(-,5(t)) : M — X is linear.

(Note that £(-,n) is not defined for general n, only for n = j(t) where ¢t € T.) For
any fixed m € M, the map

m.j()): T — X
factors through j: 7 — N,
L(m,j(-)) = ¢(m,j(-)) where p(m,:): N — X is linear.
View p(m,n) as a function of its parameter m along with its argument n,
p:MxN—X.

Thus
o(i(s),7(t)) = £(i(s),5(t)) = ¢(s,t) for all (s,t) e SxT.

In other words, we have a unique commutative diagram
M x N
(mﬁ \
SxT—" X

The map ¢ is linear in its second component, and the relation ¢(m,j(t)) =
£(m, j(t)) for all m and any given ¢ says that also ¢ is linear in its first component
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when its second component takes the form j(t), so in fact ¢ is linear in its first
component overall,

p(m+m',n)
= p(m+m’, Z aij(t)) substituting for n
teT
= Zatgo (m+m’,j(t)) since ¢(m +m’,-) is linear

=3 a(

J(@) + p(m’, j(t)) since (-, j(t)) is linear

= Z arp(m, j(t)) + Z agp(m’, j(t by the distributive law in X
) +
!/

Z aj(t ,Zatj (t)) since p(m,-) and p(m/',-) are linear
= <p(m n) + p(m 7”) substituting n.
[

Proposition 4.2 (Multiplicativity of Rank). Leti:S — M and j : T — N be
free A-modules. Let 7: M x N — M ®4 N be the tensor product map. Then

T70(4,j): SXT — M®aN, (s,t)—i(s)®j(t)
is again a free A-module. Thus
rank s (M ®4 N) = ranks (M) - rank4(N).

Remark: In contrast to the initial construction of the tensor product from a
free module, this proposition constructs a free module from a tensor product. The
encapsulation free(S x T) = free(S) ® 4 free(T) of the proposition is in contrast to
the result free(S U T) = free(S) x free(7) from the writeup on free modules.

Proof. Let X be an A-module, and consider a set map ¢ : S x T — X. By the
lemma, there exists a unique bilinear map ¢ : M x N — X such that the following
diagram commutes,

M x N

<mﬁ e
SxT—2° X.

Now the tensor product mapping property gives a commutative diagram

MxN—T— 3 M®@uN
|
\ | ®
® 1
X,

where ® is linear. Concatenate with the previous diagram to get the desired com-
mutativity property of @,

M®a N

P
¢

SXT ——X.
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To show that any linear ® : M ® 4 N — X such that ®o7o0o(i,j) = ¢ is unique,
note that ¢ = ®o7: M x N — X is bilinear and satisfies ¢ o (i,j) = ¢. By the
lemma ¢ is unique, and then also ® is unique by nature of the tensor product. O

5. INVARIANCE OF RANK

Proposition 5.1 (Invariance of Rank Under Change of Ring). Let A C B be a
containment of rings with 14 = 1g. Let i : S — F be a free A-module, and let
T:BXF — B®a F be the tensor product. Then

k:S—B®aF, s+——1(1p,i(s)) =1p®i(s)
is a free B-module of the same rank. Here the B-module structure of B @4 F is
bt @ m) = (bb') @ m.
Remark: The proposition and others like it hold if rather than the containment
A C B we have a homomorphism « : A — B of rings-with-unit with a(14) = 1p.
We will discuss this issue later in the handout.
Remark: This proposition again constructs a free module from a tensor product.
This time the encapsulation might be freep(S) = B ®4 frees(S).
Proof. Consider any set-map from S to a B-module,
p: S — X.

We want the usual diagram involving a B-linear map & : By F — X.
View X as an A-module. Because i : S — F' is a free A-module, we have a

diagram
T SLw
7 ~
~
~

S—2 33X,
where W is A-linear. To incorporate the domain of the A-bilinear map 7 : BX F —
B ®4 F into the diagram, introduce a map that makes reference to the B-module
structure of X,
I''BxF— X, T(bm)=>0b¥(m).
To see that I' is A-bilinear, compute that for a € A and b,b' € B and m,m’ € F,
Lb+bV,m)=(b+b)¥(m)=b¥(m)+b¥(m)=T(b,m)+T,m),
I'(ab,m) = ab¥(m) = al'(b,m),
Lb,m+m')=b¥(m+m') =0b¥(m)+b¥(m') =T(b,m) + T'(b,m’),
I'(b,am) = b¥(am) = ab¥(m) = al'(b,m).
Also introduce the map
j:S§— BxF, s+ (1p,i(s)).

Now a diagram that essentially repeats the previous one, but with the desired
product at the upper left corner, commutes as well,

B x F

~
JT So T

s— 3x
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The mapping property of the tensor product gives a commutative diagram

BxF—" sB®uF
|

r | &

4

X

where @ is A-linear. And so concatenating the diagrams gives (recalling the map k
from the statement of the proposition)

B®aF

/ l@
s X
We need to show that ® is B-linear. Recall from the statement of the proposition
that the B-module structure of B ®4 F' is b(b/ ® m) = (bb') ® m. Now compute,
O(b(Y @m)) = ®((bb') ®m) by the structure of B®4 F
=T(bb',m) because ' = ® o7
= (bb')¥(m) by definition of T
= b(b/¥(m)) by the structure of B ®4 F
=bl'(b',m) by definition of T’
=b®(b'®@m)  because ' = Por.
Finally, we need to show that ® is unique. Given a set-map ¢ : § — X
where X is a B-module, and given a B-linear map ® : B ®4 F —> X such that

borTo(lpxi)=¢,letI'=Po7:BxF — X. Then I' is B-linear in its first
argument. For example, remembering that b ® m denotes 7(b,m),

L(bb,m) = ®(bb @ m) = ®(b(b @ m)) = b®(b @ m) = bI'(b,m).
Similarly I' is A-linear in its second argument. The values
[(1p,i(s)) = ®(1p @i(s)) = é(s)

are determined by ¢. Consequently, so is I' overall in consequence of the linearity
of I in each of its arguments,

T(b, > adi(s)) =Y abl(1p,i(s)).

Because T is A-bilinear, the mapping property of the tensor product B® 4 F' shows
that the B-map ® compatible with I' is unique. In sum, the map I' determined by
any ® compatible with ¢ is unique to ¢, and ® is unique to I', altogether making
® unique to ¢. (I

Note that
BaF={b(l®m):be B,me F},
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and the algebra of B ® 4 F' involves rules such as
b(lem)+(1em'))=b1@m)+blem),
(b+b)(1@m)=0b1®m)+V(1em),
(bb") (1 ® m) = b(b(1 ® m)),
b(1®@m)=1® bm if and only if b € A.

That is, if we think of F' as containing an independent copy Ai(s) of A for each
element s of the generating set S, then correspondingly B ® 4 F' contains an inde-
pendent copy B(1 ®i(s)) of B for each s.
As an example, the complex number system
C=RxRi={z+yi:z,yecR}
is a free R-module of rank 2. Naively converting it to a C-module gives
{z+wi:z,weC}=C,

a free C-module whose rank is only 1 due to dependence among the generators once
the ring of scalars is enlarged. However, converting it to a C-module via the tensor
product gives

Cor RxRi)=C(1®1) xC(l®1),
a free rank-2 C-module that acquires its rank and its basis naturally from the
original rank-2 R-module, with no accidental collapsing.

Similarly, consider a field F' = Q(«) where « is algebraic over Q. Let f(X) €
Q[X] be the minimal monic polynomial over Q satisfied by a.. Thus f is irreducible
over Q and

F=QX]/(f(X)).
As a polynomial over R (rather than over Q), f has real roots and pairs of complex
conjugate roots, which is to say that it factors into a product of linear polynomials
and irreducible quadratic polynomials,

70 = [[ 2O [[ @) i RIX).
i=1 j=1

The tensor product R ®g I’ decomposes correspondingly,
R &g F = RIX]/(f(X)) = [[RIX)/AL:(X)) [ RIXI/(Qs(X)) =R x C*.
( J

(For example, R ®g Q(v/2) = R? whereas R(v/2) = R.) The natural map F —
R ®g F' thus gives rise to the so-called canonical embedding ' — R" x C* of
algebraic number theory.

6. THE TENSOR PRODUCT OF MAPS
Consider two A-linear maps,
f:M — M, g: N — N’
The map
To(fxg): MxN— M ®@sN', (m,n)— f(m)®g(n)
is readily seen to be bilinear. For example,

fm+m') @ g(n) = (f(m) + f(m')) @ g(n) = f(m) @ g(n) + f(m') @ g(n).
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The mapping property of M ® 4 N gives a unique linear map,

MeaN-"2% M 4N
M x N~ A < N,
In symbols, the formula for f ® g is
(f@g)men) = f(m)®g(n).

7. TENSOR PRODUCT FORMATION AS LEFT-ADJOINT INDUCTION
We have been working with a ring-with-identity A. Introduce now a second
ring-with-identity B and a homomorphism
a:A— B, 1a+—1p.
Thus B is an A-algebra under the rule
a-b=ala)h, ac A, beB.
And similarly any B-module N also has the structure of an A-module,
a®Gn=afa)-n, a€A, neN.

In practice we drop « from the notation and write ab and an, tacitly understanding
that the previous two displays are really what is meant. Especially, when A is a
subring of B (with 14 = 1p), the inclusion map « is naturally omitted. In other
contexts, e.g., « : Z — Z/nZ, a bit more information is left out of the notation
when we drop «, but the resulting gain in tidiness is worthwhile.

Although we may view every B-module as an A-module, and every B-module
map as an A-module map, in both cases by forgetting some of the full B-action
and instead restricting it to the A-action, strictly speaking a B-module viewed as
an A-module is not the same algebraic structure as the original B-module. That
is, we have a forgetful functor or restriction functor,

Res% : {B-modules} — {A-modules},
Res : { B-module maps} — {A-module maps}.
Although the restriction functor does nothing, in the sense that
ResﬁN = N as an abelian group for all B-modules N,

Reslj g = g as an abelian group map for all B-module maps g,

still Resﬁ N emphatically does not fully equal N since they are algebraic structures
of different types, and similarly Resﬁ g does not fully equal g. Still a person could
easily wonder whether there is any point to the forgetful functor.

There is. Its use is to help describe a more interesting left-adjoint induction
functor,

Ind% : {A-modules} — {B-modules},

Ind% : {A-module maps} — {B-module maps}.
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Here if f : M — M’ is an A-module map then its left-adjoint induced B-module
map is a map between the induced B-modules,
Ind5 f: md§M — mdf M7,

and if f: M’ —s M" is a second A-module map then the induced B-module map
of the composition is the composition of the induced B-module maps,

md5(f o f) = (Ind% f) o (Indf f).
We want three properties to hold for the left-adjoint induction functor.
e The left-adjoint induction functor should be a left-adjoint of restriction:
For every A-module M and B-module N there is an abelian group
isomorphism
iren - Homp(Ind§ M, N) =5 Hom 4 (M, Res§ N).

e The left-adjoint induction functor should be natural in M:
For every A-module map [ : M’ — M and every B-module N,
there is a commutative diagram

Hom g (Ind5 M, N) = Hom (M, Res5 N)

—oIndﬁfJ( l—of

tMm! N

Hompg(Ind§ M’, N) —= Hom 4 (M’,Res5 N)
where “—o” denotes precomposition.
e And the left-adjoint induction functor should be natural in N:

For every A-module M and every B-module map g : N — N’,

there is a commutative diagram

iM,N

Hom g (Ind5 M, N) —= Hom (M, Res5 N)

go—l JRCSE go—

M

Hom p(Ind5 M, N) LA Hom 4 (M, Res% N')

where “o—7" denotes postcomposition.

The reader is warned that left-adjoint induction is absolutely not standard usage.

Theorem 7.1 (Tensor Product Formation is Left-Adjoint Induction). Let A and B
be rings-with-unit, and let a : A — B be a ring homomorphism such that a(14) =
1p. The tensor product

B ®4 - :{A-modules} — {B-modules}, M+ B®a M,
idp ®a4 - :{A-module maps} — {B-module maps}, f ——idg®a f
is a left-adjoint of restriction, is natural in M, and is natural in N.
Proof. Define
irin - Homp(B ®4 M, N) — Hom (M, Res N)

by the formula
(i, N®)(m) = 2(L®m), me M,
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and define
jun - Homa (M, Res5 N) — Homp(B ®4 M, N)
by the formula
(ung)(b@m)=bd(m), be B, me M.

Here the product b¢(m) uses the original structure of N as a B-module, even
though not all of that structure is used in our understanding of ResA]?N as an A-
module. Then ¢ and j are readily seen to be abelian group homomorphisms, and
(all the symbols meaning what they must)

(J(®)(bem)=0b(i®)(m) =bP(1®@m) = P(bRm)
while
(i(j9))(m) = (jo) (1 @m) = 1- ¢(m) = ¢(m).
Thus iy, n is an isomorphism.

For naturality in M, compute that for every A-module map f : M’ — M and
every B-module map ® : B®4 M — N, for any m’ € M,

(irer, N (P o (idp @ f)))(m') = (P o (idp ® f))(1 ®@m')
=d(1® f(m'))
= (im,N®)(f(m"))
= ((im,n®) 0 f)(m).

Thus Z'MI,N((I) o (ldB (9 f)) = (’L'MJV(I)) o f.
For naturality in N, compute that for every B-module map ® : B M — N
and every B module map g: N — N’, for any m € M,

(in,n (g0 ®))(m) = (go @)(L@m)
=g(®(1®m))
= Reshg((ing, n®)(m))
= (Resg o (iar.n®))(m).
Thus ip,n/(g o @) :Resﬁgo(iMW(I)). ]

For an example, let k be a field and V' a vector space over k. Let K be a
superfield of k. Proposition 5.1 says that

dimg (K @5 V) = dim(V),
and even that:
If {e;} is a basis of V over k then {1x ® e;} is a basis of K @ V over K.
Furthermore, we have seen that for every vector space W over K,
Homg (K ®; V,W) ~ Homy(V, Rest (W)).

Thus this special case of left-adjoint induction is understandably referred to as
extension of scalars.
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8. THE MULTIPLE TENSOR PRODUCT

Let n > 2, and let My, -+, M,, be A-modules. The n-fold tensor product
T My X - XM, — M ®y---®4 M, where 7 is n-linear
can be characterized by a mapping property summarized in a diagram similar to
Definition 1.1,
M ®p--®a4 ]\Wn

\\
~ P
T ~ =
-
-
-

My x - x M, 3 X

in which ¢ is any n-linear A-map and @ is linear.
The n-fold tensor product can be constructed as before. Specifically, consider
the free A-module

i: My x - x M, — F,

and let S be the A-submodule of F' generated by all elements of the form

i(- - ,mi+m§7~-~)—i(--- sy ) — (e ,m27--~),

i amg, ) —ai(- ma, ),
Consider the quotient @ = F/S and the quotient map ¢ : FF — Q. Then the
n-fold tensor product is

qoi:M; x---x M, — Q.
The n-fold tensor product of maps is formed similarly to the binary tensor prod-

uct of maps as well,

(i@ f)(m - @m,) = fi(m)®-- & fu(mn).
It is a matter of routine to verify that there is a natural isomorphism
(My ®a Ma) ®4 Ms — My ®4 My ®4 Ms
under which for all A-linear maps
fi:M; — M, i=1,2,3,
there is a commutative diagram
(My ®a Ma) @4 Mz ——— My @4 My @4 M3
(fl@AfQ)@AfS\L J{fl@Afé@Afﬁi
(My ®a M3) @4 My —— M @4 My @4 M3,

And similarly for M7 ® 4 (M ® 4 M3). That is, the formation of tensor products is
associative.



