
MODULES OVER A PID

A module over a PID is an abelian group that also carries multiplication by a
particularly convenient ring of scalars. Indeed, when the scalar ring is the integers,
the module is precisely an abelian group. This writeup presents the structure
theorem for finitely generated modules over a PID. Although the result is essentially
similar to the theorem for finitely generated abelian groups from earlier in this
course, the result for modules over a PID is not merely generality for its own sake.
Its first and best known application bears on linear algebra, and in this context the
PID is the polynomial ring k[X] (k a field) rather than the integer ring Z. The
theorem cogently gives the rational canonical form and the Jordan canonical form
of a linear transformation, whereas establishing these results by more elementary
methods feels unexplanatory to me. The next writeup of this course will present
this application.

This writeup’s proof of the structure theorem for finitely generated modules over
a PID is not the argument found in many texts. That argument, which confused
me for a long time, is an algorithm that

• proceeds from an assumption that often is left tacit, that the module has
a presentation, meaning a characterizing description in terms of generators
and relations that fully determines it (we so assumed in our proof of the
theorem for finitely generated abelian groups);
• in fact is only as algorithmic as the arithmetic of the PID;
• blurs the distinction between two different uniqueness questions in a way

that is easily lost.

Hence my choice to present the proof here instead, based on an exposition in Pierre
Samuel’s algebraic number theory text.

1. The Sun-Ze Theorem Again

Theorem 1.1. Let A be a commutative ring with 1. Let a and b be ideals of A
such that a + b = A. Then the natural map

A −→ A/a×A/b, x 7−→ (x+ a, x+ b)

induces an isomorphism

A/ab
∼−→ A/a×A/b.

Proof. First we show that ab = a ∩ b. The reasoning

(ab ⊂ a and ab ⊂ b) =⇒ ab ⊂ a ∩ b

holds with no reference to the given condition a + b = A. On the other hand, the
condition implies that

a+ b = 1 for some a ∈ a, b ∈ b,

so that every c ∈ A takes the form c = (a+ b)c = cb+ ac, and consequently

c ∈ a ∩ b =⇒ c = cb+ ac ∈ ab + ab = ab.
1
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Now, the map A −→ A/a × A/b taking each x to (x + a, x + b) certainly has
kernel a∩b = ab. We need to show that it surjects. Given (y+a, z+b) ∈ A/a×A/b,
the value (constructed using a and b from the previous paragraph)

x = by + az =

{
(1− a)y + az = y + a(z − y)

by + (1− b)z = z + b(y − z)

satisfies

x+ a = y + a,

x+ b = z + b.

This completes the proof. �

A straightforward induction argument generalizes the result to any number of
pairwise coprime ideals, as follows.

Corollary 1.2. Let A be a commutative ring with 1. Let r ≥ 2 be an integer, and
let a1, · · · , ar be ideals of A such that ai + aj = A for all distinct pairs i, j. Then
the natural map

A −→
r∏

i=1

A/ai, x 7−→ (x+ a1, · · · , x+ ar)

induces an isomorphism

A/

r∏
i=1

ai
∼−→

r∏
i=1

A/ai.

For the induction, take pairs (ai, ar,i) ∈ ai × ar for i = 1, · · · , r − 1 such that

a1 + ar,1 = 1, a2 + ar,2 = 1, · · · , ar−1 + ar,r−1 = 1,

and multiply the equalities together to get

a1 · · · ar−1 + ar = 1 where ar ∈ ar.

Thus (a1 · · · ar−1)+ar = A and so by the result for two ideals and then by induction
on r,

A/

r∏
i=1

ai
∼−→ A/

r−1∏
i=1

ai ×A/ar
∼−→

r∏
i=1

A/ai.

2. Finite Generation

Proposition 2.1. Let A be a commutative ring with 1. Let M be an A-module.
Then the following conditions are equivalent:

(a) Every nonempty family of A-submodules of M contains a maximal element
under inclusion.

(b) Every A-submodule of M is finitely generated.
(c) (Noetherian property) Every increasing sequence M1 ⊂ M2 ⊂ M3 ⊂ · · · of

A-submodules of M is eventually stationary.

Proof. (Sketch.) Assume (a). Let M ′ be an A-submodule of M . The family

{finitely generated A-submodules of M ′}
contains a maximal element, which must be all of M ′, and so M ′ is finitely gener-
ated. This shows that (a) implies (b).
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Assume (b). Consider an increasing sequence M1 ⊂ M2 ⊂ M3 ⊂ · · · , and let
M ′ =

⋃
iMi. Because M ′ is finitely generated, and each generator lies in some Mi,

the entire set of generators lies in some Mi, after which the sequence is stationary.
This shows that (b) implies (c).

Assume (c). Consider any nonempty family of A-submodules of M . Let M1 an
element of the family. If M1 is maximal in the family under inclusion then (a) holds.
Otherwise M1 ⊂ M2 for some M2 in the family, with the containment proper. If
M2 is maximal in the family under inclusion then (a) holds. Otherwise M2 ⊂ M3

for some M3 in the family, with the containment proper, and so on. Because (c)
holds, this process must terminate, producing a maximal element under inclusion
in the family. �

Especially, if A is a PID, viewed as a module over itself, then certainly every
A-submodule of A is finitely generated and thus every nonempty family of ideals
of A contains a maximal element.

3. Basis, Rank, and the Main Theorem

Definition 3.1. Let A be a PID, and let M be an A-module. A subset {ei} (possibly
infinite) of M is a basis of M if every x ∈ M has a unique expression as a finite
A-linear combination of {ei}. An A-module F that has a basis is called free.

The definition here is not the mapping-theoretic definition of free module from
an earlier handout, but of course the two are compatible.

Not all modules-over-PIDs are free, i.e., not all such modules have bases. For
example, let A = Z and let M = Z/2Z. More interestingly, let A = Z and let M =
Q. We will return to this example later in the writeup. However, for finitely-
generated modules, any submodule of a free module is again free, as follows.

Proposition 3.2. Let A be a PID, and let F be a free A-module of finite rank. If
S is an A-submodule of F then also S is free, and its rank is at most the rank of A.

Proof. Let n denote the rank of F . When n = 1 the submodule S is free on at
most one generator because A is a PID. For n ≥ 2, identify F with A⊕n and
let π : A⊕n −→ A⊕(n−1) be the projection to the last n − 1 components. Since
ker(π|S) = ker(π) ∩ S is up to isomorphism an ideal of A, it is free on at most one
generator. Also, πS is free on at most n − 1 generators by induction, and so its
mapping property guarantees a section ι : πS −→ S, an A-module map such that
π ◦ ι = 1S . Because π ◦ ι = 1S , the section has trivial kernel and so its image ι(πS)
is isomorphic to πS, again free on at most n − 1 generators. The decomposition
s = (s−(ι◦π)(s))+(ι◦π)(s) for any s ∈ S shows that S = ker(π|S)⊕ι(πS) is free on
at most n generators, as claimed; the sum is direct because π◦(ι◦π) = (π◦ι)◦π = π.
(That is, if π(ι(π(s))) = 0 then π(s) = 0 and so ι(π(s)) = 0.) �

Now we proceed to our main theorem.

Theorem 3.3. Let A be a PID. Let F be free A-module of finite rank n, and let S
be an A-submodule of F , which therefore is free as well and has rank m ≤ n. There
exist a basis (e1, · · · , en) of F and a chain of ideals of A,

a1 ⊃ · · · ⊃ am,
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such that

F = Ae1 ⊕ · · · ⊕Aem ⊕ · · · ⊕Aen,
S = a1e1 ⊕ · · · ⊕ amem.

The ideals a1, · · · , am are uniquely determined by F and S.

The idea of the proof is as follows. In the desired decompositions of F and S the
ideal a1 is large, so the argument starts by using its setting to concoct a large a1
associated to F and S. Doing so entails a generator a1 of a1 in A and an element e′1
of S. Next the argument shows that e′1 takes the form e′1 = a1e1 where e1 ∈ F .
Then Ae1 will be the first summand of F and a1e1 = Aa1e1 = Ae′1 the first
summand of S, and the decompositions will follow easily.

Proof. We take S 6= 0, since otherwise the result is immediate. For every A-map
w : F −→ A, the submodule-image w(S) is an ideal of A. The key to the argument
is that (as noted at the end of the previous section) among the ideals {w(S)},
some particular ideal u(S) is maximal where u : F −→ A is an A-map.1 Certainly
u(S) 6= 0 since for any basis (x1, · · · , xn) of F , some projection-image πi(S) is
nonzero; such a basis exists because S 6= 0 and so F 6= 0. Let

a1 = u(S) (maximal in the ideals {w(S)}).
Since A is a PID, a1 takes the form

a1 = a1A where a1 = u(e′1) for some e′1 ∈ S.
As explained, we want to show that e′1 = a1e1 for some e1 ∈ F .

To do so, we establish that any A-map v : F −→ A takes e′1 to a multiple of a1.
Indeed, since the sum of ideals is again an ideal,

a1 = u(e′1)A ⊂ u(e′1)A+ v(e′1)A = (αu(e′1) + βv(e′1))A for some α, β ∈ A
= w(e′1)A where w = αu+ βv

⊂ w(S).

But w(S) cannot properly contain a1 because the latter is maximal among A-map
images of S in A. So in particular the first containment in the display must be
equality, giving v(e′1) ∈ u(e′1)A = a1A as desired.

Knowing that v(e′1) is always a multiple of a1 in A as v varies, we now show that
e′1 itself is a multiple of a1 in F . Consider any basis (x1, · · · , xn) of F . Specialize v
to each projection πi to get that the projections are all multiples of a1,

πi(e
′
1) = a1αi where αi ∈ A, i = 1, · · · , n.

Thus, as desired,

e′1 =
∑
i

a1αixi = a1
∑
i

αixi = a1e1 where e1 =
∑
i

αixi.

Since e′1 = a1e1 and a1 = u(e′1), it follows that u(e1) = 1. Consequently the
decomposition of each element of F as

x = u(x)e1 + (x− u(x)e1), x ∈ F

1Although u(S) is maximal among the images of S under A-maps from F to A, and although
it is an ideal of A, it needn’t be a maximal ideal of A in the algebra textbook sense. In particular,

it could be all of A, e.g., if S = F .
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gives the direct sums

F = Ae1 ⊕ ker(u),

S = a1e1 ⊕ (ker(u) ∩ S).

Indeed, the decomposition gives the first sum because the intersection is trivial,
and it gives the second sum as well because u(S) = a1.

Induction on n gives a basis (e2, · · · , en) of ker(u) and ideals a2 ⊃ · · · ⊃ am of A
such that ker(u) ∩ S = a2e2 ⊕ · · · ⊕ amem. If m ≥ 2 then we need to show that
a1 ⊃ a2. Define

w : F −→ A, w(
∑m

i=1 aiei) = a1 + a2.

Then w(S) = a1 + a2 contains a1 and hence is a1 by maximality, and contains a2.

As for uniqueness, in the context of multilinear algebra (which we will learn
later in the semester) the ideals ai have a clear intrinsic description in terms of F
and S, making their uniqueness clear. These ideas will be explained fully in a later
writeup. For now, in the current writeup, we do two things: First, we show quickly
that the first elementary divisor is unique, and second, we do give a uniqueness
proof here for the sake of completeness. But the reader who intends to go on to
the relevant multilinear algebra argument is encouraged to skip the one here. After
seeing the multilinear algebra argument, the reader is invited to look at the one
here and see that in fact it is the multilinear algebra but with no language yet at
hand to express the ideas.

For the uniqueness of the first elementary divisor, any decomposition

F =

n⊕
i=1

Aei, S =

m⊕
i=1

aiei, a1 ⊃ · · · ⊃ am

shows that a1 is the image of S under an A-linear map from F to A and it contains
all such images of S. That is, a1 is uniquely maximal among all such images.
This intrinsic characterization of a1 in terms of F and S inherently connotes its
uniqueness.

For the full-but-underpowered uniqueness proof, suppose we have (e1, · · · , en)
and a1 ⊃ · · · ⊃ am as above. For each k ∈ {1, · · · ,m}, for every alternating A-
multilinear map wk : F⊕k −→ A, the submodule-image wk(S) is an ideal of A. For
each k, let uk : F⊕k −→ A be such a map such that

uk(S⊕k) is maximal in the ideals {wk(S⊕k)}, k = 1, · · · ,m.
Note that each uk is described intrinsically in terms of F and S, with no reference
to the basis elements ei or the ideals ai. The claim is that

u1(S) = a1, u2(S ⊕ S) = a1a2, · · · , um(S⊕m) = a1a2 · · · am.
To establish the claim, write any element of S as

x =

m∑
j=1

ajej , each aj ∈ aj .

Thus, since all the uk are multilinear, any uk(x1, · · · , xk) is a sum of terms of the
form

aj1 · · · ajkuk(ej1 , · · · , ejk), j1, · · · , jk distinct,

and because a1 ⊃ · · · ⊃ am, all such terms lie in a1 · · · ak. This gives the containment
uk(S⊕k) ⊂ a1 · · · ak. To show that the containment is equality, fix k ∈ {1, · · · ,m}



6 MODULES OVER A PID

and consider a particular alternating A-multilinear map wk : F⊕k −→ A, the
determinant function on the left k-by-k square subblock of a k-by-m matrix of
coefficients,

wk

(
m∑
i=1

c1iei, · · · ,
m∑
i=1

ckiei

)
= det([cij ]i,j=1,··· ,k).

Let ai generate ai for i = 1, · · · , k. Then wk(a1e1, · · · , akek) = a1 · · · ak gener-
ates a1 · · · ak. Thus a1 · · · ak is not a proper superideal of uk(S⊕k).

Since a1 and a1a2 are intrinsic to F and S, so is a2 since the PID A is a UFD.
Continuing in this fashion shows that all of a1, · · · am are intrinsic to F and S. �

After presenting the standard consequences of Theorem 3.3 in the next section,
we will comment at some length on what has happened in this writeup—and what
hasn’t happened, which can easily get lost—in the last section. For now we say
briefly that the proof as given is not an argument that anybody would think up
from scratch while investigating the phenomena. Rather, it is the sort of argument
that can be found post hoc once one already knows that the theorem is true and
therefore inevitably has a light, graceful verification. Here light, graceful applies
only to the proof of the first part of the theorem; as discussed above, the good proof
of uniqueness is set in a multilinear algebra context that we don’t yet know.

4. Consequences

Corollary 4.1. Let A be a PID. Let M be a finitely generated A-module. Then

(a) There exist nonnegative integers m and r, and ideals

a1 ⊃ · · · ⊃ am

such that

M ≈ A/a1 ⊕ · · · ⊕A/am ⊕A⊕r.
(b) If M is torsion-free then M is free.
(c) Furthermore, M decomposes as

M ≈
⊕

Mi, each Mi =

{
A/peA pi ⊂ A maximal, e ≥ 1,

A.

The decomposition of M into such factors is uniquely determined by the
integers m and r, and by the ideals ai.

Proof. (a) M is the image of a free A-module F of finite rank under a map whose
kernel S is a submodule of F . Thus

M ≈ Ae1 ⊕ · · · ⊕ Aem ⊕Aem+1 ⊕ · · · ⊕Aen
a1e1 ⊕ · · · ⊕ amem

≈ A/a1 ⊕ · · · ⊕A/am ⊕A⊕(n−m).

(b) By (a), the torsion-free case is M ≈ A⊕t.
(c) Factor each ai as a product

∏
j p

eij
ij , and apply the Sun-Ze theorem to each

A/ai. �

Regarding item (b) of the corollary, the standard example of a nonfree torsion-
free module over a PID is the Z-module Q, mentioned earlier in the writeup.
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5. Comments

Given a PID A and a finitely generated A-module M , a number of questions
present themselves:

(1) We want to know whether M is the third joint of a short exact sequence
whose middle joint is free,

0 −→ S −→ F −→M −→ 0, F free.

The answer is yes. Every A-module M is the image of a free module F ,
regardless of whether the commutative ring-with-unit A is a PID and re-
gardless of whether M is finitely generated. The first joint S of the short
exact sequence is the kernel of the map from F onto M .

(2) Granting such a short exact sequence, we want a presentation

M = (E |R)

where E is a minimal set of generators and R is a minimal set of linear
combinations of E , and the linear combinations of E that are 0 in M are
precisely the linear combinations of R. There should be no nontrivial linear
relations among the elements of R.

Theorem 3.3(a) says that the submodule S in the short exact sequence is
also free, making the short exact sequence a one-stage free resolution of M .
So a presentation arises by taking E as the basis of a minimal-rank free F
that maps to M and taking R as the corresponding generators of S. In
fact, this holds regardless of whether M is finitely generated—the induction
argument in the proof readily becomes transfinite induction.

(3) Granting a presentation, we want to know whether there exists a presenta-
tion in some standard form.

Yes. This is the content of Corollary 4.1(a) and (c), whose proofs follow
from Theorem 3.3(b) and then the Sun-Ze theorem.

(4) Granting that there exists a presentation in standard form, we want a useful
algorithm to put any presentation into standard form.

The argument here does not speak directly to this question. In the proof of
Theorem 3.3, the choice of an ideal that is maximal in a set of ideals is not
constructive.
Although an elaboration of the matrix-based approach that we saw earlier
for abelian groups does scale up to finitely generated modules over a PID,
the scaled-up version is only as algorithmic as the arithmetic of the PID.
If the PID is Euclidean then the abelian group method works essentially
verbatim, and if the PID is not Euclidean but has some other feature that
makes its arithmetic easy then the more general matrix method is at least
applicable even though it is more complicated. This handout does not
present the matrix method because it is not necessarily algorithmic, and
because it addresses only this question (4) but not the other questions
here. Its many algorithm-like details can distract a student from its actual
non-algorithmic-ness, and from the rest of the issues in play.
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(5) Granting a presentation in standard form, we want to know whether the
integers m and r and the ideals ai are unique.

Yes, but we have not shown this. The point is that Corollary 4.1(a) does
not say that the integers m, r and the ai are uniquely determined by M ,
only that they are uniquely determined by the resolution of M , i.e., by F
and S. Hence Corollary 4.1(c) does not say that the factors A/peA and A
are uniquely determined by M .
Of course they are, but showing this requires further work. A standard
elementary approach is illustrated in Gallian’s treatment of the abelian
group case. Another approach is to consider the possible variations among
resolutions of M , in particular among minimal resolutions, and then to
show that those variations do not affect the invariants.


