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1. The derivative and repeated factors

The usual definition of the derivative in calculus involves the nonalgebraic notion
of limit that requires a field such as R or C (or others) where limits are sensible for
analytic reasons.

However, polynomial differentiation is an algebraic notion over any field. One
can simply define the polynomial derivative to be as it is from calculus,

D

(
n∑
i=0

aiX
i

)
=

n−1∑
i=0

(i+ 1)ai+1X
i.

Alternatively (and working a bit casually here), one can introduce a second inde-
terminate T and observe that the polynomial

f(X + T )− f(X) ∈ k[X][T ]

is satisfied by T = 0, and so it takes the form

f(X + T )− f(X) = T g(X)(T ), g ∈ k[X][T ].

The derivative of f is then defined as the T -constant term of g(X)(T ),

f ′(X) = g(X)(0) ∈ k[X].

The familiar facts that the derivative of Xi is iXi−1 for i ≥ 0, that differentiation
is linear, i.e., (f + cg)′ = f ′+ cg′, and that differentiation satisfies the product rule,
i.e., (fg)′ = fg′ + f ′g, can be rederived from this purely algebraic definition of the
derivative. In fact, yet a third approach to the polynomial derivative is to define
X ′ = 1 and then stipulate that differentiation is the unique extension of this rule
that is linear and satisfies the product rule. (For example, 1 = X ′ = (X · 1)′ =
X · 1′ +X ′ · 1 = X · 1′ + 1, so 1′ = 0.)

Proposition 1.1. Let k be a field, and let f ∈ k[X] be a polynomial. Then:

If gcd(f, f ′) = 1 then f has no repeated factors.
1
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Proof. To establish the contrapositive, suppose that f = g2h in k[X]. The product
rule gives

f ′ = 2gg′h+ g2h′ = g(2g′h+ gh′).

Thus g | f ′, and so g | gcd(f, f ′), and so gcd(f, f ′) 6= 1. �

2. Definition of the cyclotomic polynomials

Working in Z[X] we want to define cyclotomic polynomials

Φn, n ∈ Z≥1.

Provisionally, define

Φn(X) =
Xn − 1∏
d|n
d<n

Φd(X)
, n ≥ 1.

Here it is understood that for n = 1 the denominator is the empty product, i.e.,

Φ1(X) = X − 1.

Certainly each Φn lies in the quotient field Z(X) of Z[X] but we will show con-
siderably more. In fact, always Φn lies in Z[X] and is irreducible. For example,
repeatedly using the identity Xn − 1 =

∏
d|n Φd(X) in various ways,

Φ2(X) =
X2 − 1

X − 1
= X + 1 = −Φ1(−X),

Φp(X) =
Xp − 1

X − 1
= Xp−1 + · · ·+X + 1, p prime,

Φpe(X) =
Xpe − 1

Xpe−1 − 1
= Φp(X

pe−1

), p prime,

Φ2dp(X) =
X2dp − 1

(X2d−1p − 1)Φ2d(X)
=
X2d−1p + 1

X2d−1 + 1
= Φp(−X2d−1

), p > 2 prime,

Φ2dpe(X) =
X2dpe − 1

(X2d−1pe − 1)Φ2d(X)Φ2dp(X) · · ·Φ2dpe−1(X)

=
X2d−1pe + 1

−Φ1(−X2d−1)Φp(−X2d−1) · · ·Φpe−1(−X2d−1)
(induction on e)

=
X2d−1pe + 1

X2d−1pe−1 + 1
= Φp(−X2d−1pe−1

), p > 2 prime,

Φ15(X) =
(X15 − 1)

(X5 − 1)Φ3(X)
=
X10 +X5 + 1

X2 +X + 1

= X8 −X7 +X5 −X4 +X3 −X + 1,

Φ2m(X) = Φm(−X), m odd,

Φ21(X) =
X21 − 1

(X7 − 1)Φ3(X)
=
X14 +X7 + 1

X2 +X + 1

= X12 −X11 +X9 −X8 +X6 −X4 +X3 −X + 1.

These identities give Φn for all n ≤ 32. They also suggest that all cyclotomic
polynomials Φn for n > 1 have constant term 1, and this is readily shown by
induction on n.
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As an aside, invoking some ideas from outside this course, the relation

Xn − 1 =
∏
d|n

Φd(X), n ∈ Z≥1

gives in consequence a closed form expression for the cyclotomic polynomials,

Φn(X) =
∏
d|n

(Xd − 1)µ(n/d), n ∈ Z≥1,

in which µ is the Möbius function of elementary number theory,

µ(

g∏
i=1

peii ) =

{
(−1)g if ei = 1 for each i,

0 if ei ≥ 2 for some i.

Here it is understood that terms p0 are omitted from the product in the previous
display, and that we view 1 as the empty product of prime powers, so that the
formula gives µ(1) = (−1)0 = 1. The formula for the cyclotomic polynomial Φn(X)
as a product of polynomials Xd − 1 and their reciprocals, in consequence of the
formula for the polynomial Xn − 1 as a product of cyclotomic polynomials Φd(X),
is an instance of Möbius inversion. For more on these matters, see

http://people.reed.edu/~jerry/361/lectures/lec03.pdf .

We make two observations about the polynomial Xn − 1 where n ∈ Z≥1.

• Xn − 1 has no repeated factors in Z[X] for any n ∈ Z≥1. Indeed, working
in the larger ring Q[X] we have

(Xn − 1)− (1/n)X · (Xn − 1)′ = (Xn − 1)− (1/n)X · nXn−1 = −1 ∈ Q×,

so that gcd(Xn − 1, (Xn − 1)′) = 1. As explained above, Xn − 1 therefore
has no repeated factors in Q[X], much less in Z[X]. For future reference,
we note that this argument also works in (Z/pZ)[X] where p is prime, so
long as p - n.

• For any n,m ∈ Z≥1,

gcd(Xn − 1, Xm − 1) = Xgcd(n,m) − 1.

Indeed, taking n > m, the calculation

Xn − 1−Xn−m(Xm − 1) = Xn−m − 1

shows that

〈Xn − 1, Xm − 1〉 = 〈Xn−m − 1, Xm − 1〉,

and, letting n = qm + r where 0 ≤ r < n and repeating the calculation q
times,

〈Xn − 1, Xm − 1〉 = 〈Xr − 1, Xm − 1〉.

That is, carrying out the Euclidean algorithm on Xn − 1 and Xm − 1
in Q(X) slowly carries out the Euclidean algorithm on n and m in Z. (If
the Euclidean algorithm on n and m takes k division-steps, with quotients
q1 through qk, then the Euclidean algorithm on Xn − 1 and Xm − 1 takes
q1 + · · ·+ qk steps.) The result follows.
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Recall the definition

Φn(X) =
Xn − 1∏
d|n
d<n

Φd(X)
, n ≥ 1.

Note that

• Φ1 ∈ Z[X], and
• (vacuously) no Φk and Φm for distinct k,m < 1 share a factor.

The two bullets are the base case of an induction argument. Fix some n ≥ 1 and
assume that

• all Φm for m ≤ n lie in Z[X], and
• no Φk and Φm for distinct k,m < n share a factor.

Let m < n, and let k = gcd(m,n) ≤ m < n. Any common factor of Φm and Φn is
a common factor of Xm − 1 and Xn − 1, hence a factor of Xk − 1. However, the
calculation

Φn(X) =
Xn − 1∏
d|n
d<n

Φd(X)

∣∣∣∣∣∣∣
Xn − 1∏
d|n
d≤k

Φd(X)
=
Xn − 1

Xk − 1

shows that no factor of Φn is a factor of Xk − 1. In sum, the strict inequality in
the second bullet weakens: no Φk and Φm for distinct k,m ≤ n share a factor.
Equivalently, no Φk and Φm for distinct k,m < n+ 1 share a factor.

Now, for each proper divisor d of n + 1, each factor of Φd is a factor of Xd − 1
in Z[X], hence a factor of Xn+1 − 1 in Z[X]. And the product∏

d|n+1
d<n+1

Φd(X)

contains no repeat factors of Xn+1 − 1. Thus Φn+1 ∈ Z[X]. This completes the
induction step:

• all Φm for m ≤ n+ 1 lie in Z[X], and
• no Φk and Φm for distinct k,m < n+ 1 share a factor.

By induction, Φn ∈ Z[X] for all n ∈ Z≥1, and no two Φn share a factor.

The totient function identity
∑
d|n φ(d) = n quickly combines with the formula∏

d|n Φd(X) = Xn − 1 and a little induction to show that the degree of the cyclo-

tomic polynomial is the totient function of its index,

deg(Φn) = φ(n), n ≥ 1.

If we view the integers Z as a subring of the complex number field C then the
nth cyclotomic polynomial factors as

Φn(X) =
∏

0≤e<n
gcd(e,n)=1

(X − ζen), where ζn = e2πi/n.

Indeed, the formula produces the monic polynomial in C[X] whose roots are the
complex numbers z such that zn = 1 but zm 6= 1 for all 1 ≤ m < n. Indeed, the
word cyclotomic literally refers to dividing the circle.

The previous paragraph notwithstanding, we do not want to think of the cyclo-
tomic polynomials innately in complex terms, because the integers are also compati-
ble with other algebraic structures that are incompatible with the complex numbers
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in turn. Rather, we want to think of the roots of Φn as the elements having order
exactly n in whatever environment is suitable. In the next example, the environ-
ment is Z/pZ where p is a prime that does not divide n. Earlier we observed that
our arguments apply in this setting as well.

3. Application: an infinite congruence class of primes

Theorem 3.1. Let n > 1 be a positive integer. There exist infinitely many primes p
such that p = 1 mod n.

Proof. Suppose that the only primes equal to 1 mod n are p1, . . . , pt. The idea is
to find some other prime p and some integer a such that the multiplicative order
of a modulo p is n; this holds if Φn(a) = 0 mod p and p - n. Because (Z/pZ)× is
cyclic of order p− 1, we thus have n | p− 1, i.e., p = 1 mod n. So the original list
of such primes was not exhaustive after all, and hence there is no such finite list.

To carry out the idea, introduce an unbounded family of positive integers,

a` = ` · n · p1 · · · pt, ` = 1, 2, 3, . . . .

Then Φn(a`) > 1 for all large enough `. Take such `, and with ` chosen, simply
write a for a`. The condition Φn(a) = 1 mod a makes Φn(a) coprime to a. Take
any prime divisor p of Φn(a). Thus p /∈ {p1, . . . , pt}, and

Φn(a) = 0 mod p and p - n.

As noted above, the display says that the multiplicative order of a modulo p is n
and consequently the proof is complete. �

4. Application: Wedderburn’s theorem

The cyclotomic polynomials combine with the counting formulas of group actions
to provide a lovely proof of the following result.

Theorem 4.1. Let D be a finite division ring, i.e., a field except that multiplication
might not commute. Then D is a field.

Proof. The center of D is a finite field k; let q denote its order. Since D is a vector
space over k, the order of D is therefore qn for some n. We want to show that
n = 1.

For any x ∈ D, the centralizer

Dx = {y ∈ D : yx = xy}

is again a division ring containing k, and its multiplicative group D×x is a subgroup
of D×. Hence |Dx| = qnx where qnx − 1 divides qn − 1, so that nx divides n. And
if x /∈ k then the divisibilities are proper. Let D× act on D by conjugation. The
class formula gives

|D| = |k|+
∑
x

|D×|/|D×x |

where the sum adds the sizes of the nontrivial orbits, or

qn = q +
∑
x

qn − 1

qnx − 1

summing over representatives of nontrivial orbits.
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Recall that each nx arising from the sum is a proper divisor of n. The formulas

Φn(q)
∣∣∣ ∏
d|n

Φd(q) = qn − 1,

Φn(q)
∣∣∣ ∏
d|n
d-nx

Φd(q) =
qn − 1

qnx − 1
,

(in which all Φ∗(q)-values are integers) show that Φn(q) divides the left side and
each summand in the formula

qn − 1 = q − 1 +
∑
x

qn − 1

qnx − 1
.

Consequently Φn(q) divides q − 1.
But viewing Z as a subring of the complex number system C lets us show that

Φn(q) can not divide q − 1 unless n = 1,

|Φn(q)|2 =
∏

0≤k<n
gcd(k,n)=1

(
(q − cos(2πk/n))2 + (sin(2πk/n))2

)
If n > 1 then each term of the product is greater than (q−1)2, and so |Φn(q)| > q−1.
This completes the proof. �

5. Irreducibility of prime-power cyclotomic polynomials

The irreducibility of prime-power cyclotomic polynomials Φpe(X) in Z[X] (and
hence in Q[X]) can be established by an argument set entirely in Z[X] and its
quotient-structures.

To avoid interrupting the pending argument, we establish a small preliminary
result.

Lemma 5.1. Let p be prime. For all ε ∈ Z≥0, (X − 1)p
ε

= Xpε − 1 in (Z/pZ)[X].

Proof. The result is immediate if ε = 0. And for the induction step, working
in (Z/pZ)[X],

(X − 1)p
ε+1

= ((X − 1)p
ε

)p = (Xpε − 1)p =

p∑
i=0

(
p

i

)
Xipε(−1)p−i = Xpε+1

− 1,

because the binomial coefficients for 1 ≤ i ≤ p − 1 vanish modulo p and because
(−1)p = −1 mod p for all p, including p = 2. �

The result (A + B)p = Ap + Bp in characteristic p is sometimes given names
such as the freshman’s dream. Such names are, in this author’s opinion, pejorative
distractions from the point that raising to the pth power is a homomorphism in
characteristic p; this has enormous consequences with no counterpart in character-
istic 0.

Again let p be prime, and let e ≥ 1. We show that the cyclotomic polynomial Φpe

is irreducible in Z[X], thereby making it irreducible in Q[X] by Gauss’s Lemma.

From the relation Φpe(X) = Φp(X
pe−1

) = (Xpe − 1)/(Xpe−1 − 1) we have

(Xpe−1

− 1)Φpe(X) = Xpe − 1 in Z[X],
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from which, by the lemma,

(X − 1)p
e−1

Φpe(X) = (X − 1)p
e

in (Z/pZ)[X],

and therefore, recalling that pe − pe−1 = φ(pe),

Φpe(X) = (X − 1)φ(p
e) in (Z/pZ)[X].

Also,

Φpe(1) = Φp(1
pe−1

) = Φp(1) = p 6= 0 in Z/p2Z.

The previous two displays show precisely that Φpe(X) is irreducible in Z[X] by
Schönemann’s Criterion (below). Hence Φpe(X) is irreducible in Q[X] by Gauss’s
Lemma.

Proposition 5.2 (Schönemann’s Criterion, special case). Let f(X) ∈ Z[X] be
monic of positive degree n. Suppose that for some element a of Z and some prime p
in Z,

f(X) = (X − a)n mod pZ[X] and f(a) 6= 0 mod p2.

Then f(X) is irreducible modulo p2Z[X] and hence f(X) is irreducible in Z[X].

Proof. We show the contrapositive statement, arguing that if f(X) is reducible
mod p2Z[X] then its reduction looks enough like (X−a)n to force f(a) = 0 mod p2.
Specifically, suppose that

f(X) = f1(X)f2(X) mod p2Z[X].

The reduction modulo p2 agrees modulo p with the reduction modulo p,

f1(X)f2(X) = (X − a)n mod pZ[X],

and so, because we may take f1(X) and f2(X) to be monic, we have for i = 1, 2,

fi(X) = (X − a)ni mod pZ[X], ni ∈ Z+;

specifically, we have the equality f1(X)f2(X) = (X − a)n in (Z/pZ)[X] where the
polynomials now have their coefficients reduced modulo p, and because (Z/pZ)[X]
is a UFD, fi(X) = (X − a)ni in (Z/pZ)[X] for i = 1, 2, giving the previous display.
In consequence of the display fi(a) = 0 mod p for i = 1, 2, and so the first display
in the proof gives f(a) = 0 mod p2 as desired. �

6. Irreducibility of general cyclotomic polynomials

In contrast to the previous section, quickly showing the irreducibility of the
general cyclotomic polynomial Φn(X) in Z[X] requires an argument that extends
beyond Z and Q. Again we establish a preliminary result.

Lemma 6.1. Let n > 1 be an integer and let p - n be prime. Then the cyclotomic
polynomial Φn(X) has no repeated factors modulo p.

Proof. Indeed, Φn(X) divides Xn − 1, which is coprime to its derivative nXn−1

modulo p because p - n. Hence Xn − 1 has no repeated factors modulo p, and so
neither does Φn(X). �
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Let n > 1, let ζn = e2πi/n, and let f(X) ∈ Z[X] be the monic irreducible
polynomial of ζn. We have Φn(X) = f(X)g(X) for some g(X) ∈ Z[X], and we
want to show that f(X) = Φn(X). The complex roots of Φn(X) are the values ζen
such that gcd(e, n) = 1, and every such root can be obtained from ζn by repeatedly
raising to various primes p - n. Thus it suffices to show that:

For any root ρ of f and for any prime p - n, also ρp is a root of f.

So, let ρ be a root of f and let p - n be prime. We show that f(ρp) = 0 by showing
that g(ρp) 6= 0. For, if instead g(ρp) = 0 then ρ is a root of g(Xp), and so f(X)
divides g(Xp) in Z[X]. Letting an overbar denote reduction modulo p, f(X) di-
vides g(X)p in the UFD (Z/pZ)[X], and so f(X) and g(X) share a nontrivial factor
h(X) in (Z/pZ)[X]. Thus h(X)2 divides ΦN (X) modulo p. But this contradicts
the lemma, showing that the condition g(ρp) = 0 is impossible. The argument is
complete.

7. Factorization of cyclotomic polynomials modulo p

Proposition 7.1. Let p be prime. Let n be a positive integer, which takes the
form n = pεm with ε ≥ 0 and p - m. Let f be the order of p modulo m, i.e.,
pf = 1 modm but pi 6= 1 modm for i = 1, . . . , f − 1, and let g = φ(m)/f where φ
is Euler’s totient function. Then there exist distinct monic irreducible polynomials
ϕ1,m(X), . . . , ϕg,m(X) in (Z/pZ)[X], all of degree f , such that

Φn(X) =

g∏
i=1

ϕi,m(X)φ(p
e) in (Z/pZ)[X], deg(ϕi,m) = f for each i.

Here f is independent of i, and f and g depend only on the reduction of p modulo m
rather than fully on p.

In algebraic number theory, this proposition describes how a prime p decomposes
in the cyclotomic integer ring Z[ζn]. As two particular instances of the proposition,
we have already seen the prime power case,

Φpe(X) = (X − 1)φ(p
e) in (Z/pZ)[X],

and in the case p = 1 modm there exist integers α1, . . . , αφ(m), distinct modulo p,
such that

Φm(X) =

φ(m)∏
i=1

(X − αi) in (Z/pZ)[X] if p = 1 modm.

This last result does not require the full strength of Proposition 7.1. Indeed, the
polynomial Xp−1 − 1 has a full contingent of roots in Z/pZ (this is Fermat’s Little
Theorem), and because Φm(X) | Xm − 1 | Xp−1 − 1 (using the condition m | p− 1
and the finite geometric sum formula for the second divisibility), so does Φm(X).
Similarly, if p 6= 1 modm then Φm(X) has no roots in Z/pZ, because its roots have
order m and m - p − 1 = |(Z/pZ)×|. Another thing to note here is that section 3
has shown that there exist infinitely many primes p such that p = 1 mod m,
without requiring the full strength of Dirichlet’s theorem on primes in an arithmetic
progression.

Proof. Recall that n = pεm. First we show that

Φn(X) = Φm(X)φ(p
ε) in (Z/pZ)[X].
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We have this result for m = 1. Also, it is trivial for ε = 0. For ε ≥ 1, work modulo p

and note that the identity Φp(X
pε−1m) = Φpε(X

m) = (Xm − 1)φ(p
ε) is

Xpεm − 1

Xpε−1m − 1
= (Xm − 1)φ(p

ε) in (Z/pZ)[X].

Break the proper divisors of pεm into two sets to get

Φpεm(X) =
Xpεm − 1

(Xpe−1m − 1)
∏

d|m
d<m

Φpεd(X)
=

(Xm − 1)φ(p
ε)∏

d|m
d<m

Φpεd(X)
in (Z/pZ)[X].

We are taking m > 1, and we may assume inductively on m that each Φpεd(X) in

the denominator is Φd(X)φ(p
ε), so indeed

Φpεm(X) =
(Xm − 1)φ(p

ε)∏
d|m
d<m

Φd(X)φ(pε)
= Φm(X)φ(p

ε) in (Z/pZ)[X].

Now we show how Φm(X) factors in (Z/pZ)[X], where p - m and p + mZ has
order f in (Z/mZ)×. The argument relies on standard facts about finite fields. In
the finite field of order pf , the multiplicative group F×

pf
is cyclic of order pf −1 and

so the mth power map on F×
pf

has a cyclic kernel of size m because m | pf −1, with

φ(m) kernel elements having order exactly m. In any proper subfield Fpi where i | f ,

the mth power map on F×pi is an automorphism because m - pi− 1, and so the only

mth root of unity in Fpi is 1. Thus Fpf is the splitting field of Φm(X) over Z/pZ. Its
Galois group is cyclic of order f , generated by the Frobenius automorphism x 7→ xp.

The φ(m) roots of Φm(X) form g disjoint Galois orbits [r] = {r, rp, rp2 , . . . , rpf−1}
of length f , and the corresponding Galois-symmetrized polynomials

ϕ[r](X) =

f−1∏
j=0

(X − rp
j

)

are irreducible in (Z/pZ)[X]. The proposition follows, with each ϕi,m in its state-
ment being ϕ[ri] for a Galois orbit [ri]. �

For example, taking pεm = 20,

Φ20(X) = 1−X2 +X4 −X6 +X8.

For p = 5, we first have Φ20(X) = Φ4(X)4 mod 5, and then Φ4(X) = X2 +1 factors
into linear terms modulo 5 because 51 = 1 mod 4. Similarly Φ20(X) factors into
quartic terms modulo 7 because 74 = 2401 = 1 mod 20, and 4 is the lowest such
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exponent of 7. Computer algebra confirms these factorizations and others,

Φ20(X) = (1 +X +X2 +X3 +X4)2 mod 2,

Φ20(X) = (1−X +X3 +X4)(1 +X −X3 +X4) mod 3,

Φ20(X) = (2 +X)4(−2 +X)4 mod 5,

Φ20(X) = (1− 3X − 3X2 + 3X3 +X4)(1 + 3X − 3X2 − 3X3 +X4) mod 7,

Φ20(X) = (3 +X2)(4 +X2)(5 +X2)(9 +X2) mod 11,

Φ20(X) = (1− 5X −X2 + 5X3 +X4)(1 + 5X −X2 − 5X3 +X4) mod 13,

Φ20(X) = (1− 4X −X2 + 4X3 +X4)(1 + 4X −X2 − 4X3 +X4) mod 17,

Φ20(X) = (1 + 6X +X2)(1− 6X +X2)(1 + 8X +X2)(1− 8X +X2) mod 19,

Φ20(X) = (1− 8X − 3X2 + 8X3 +X4)(1 + 8X − 3X2 − 8X3 +X4) mod 23,

Φ20(X) = (1− 9X − 3X2 + 9X3 +X4)(1 + 9X − 3X2 − 9X3 +X4) mod 43,

Φ20(X) = (1− 24X − 3X2 + 24X3 +X4)(1 + 24X − 3X2 − 24X3 +X4) mod 83.

Here the 10k + 3 primes 3, 13, 23, 43, 83 all have order 4 modulo 20 because they
have order 4 modulo 5 and order 1 or 2 modulo 4, and so the factorizations modulo
3, 13, 23, 43, 83 match as they must, with f = 4 and g = 2. Only the factorizations
modulo prime divisors of 20 have repeat factors, their powers being φ(22) = 2 and
φ(5) = 4.


