FACTORIZATION OF POLYNOMIALS

1. PoLYNOMIALS IN ONE VARIABLE OVER A FIELD

Theorem 1.1. Let k be a field. Then the polynomial ring k[ X] is Euclidean, hence
a PID, hence a UFD.

Recall that the polynomial norm is
Nk‘[X]—{O} —)Zzo, Nfzdeg(f)
Note that nonzero constant polynomials have norm 0. Sometimes we define
NO = —o0

as well.

The verification that the k[X]-norm makes k[X] Euclidean is a matter of poly-
nomial long division from high school. Specifically, given f,g € k[X] with g # 0,
proceed as follows.

o (Initialize)
Set g=0and r=f. Let g =bpa™+---. (So f =qg+7r.)
o (lterate)
While degr > degg,
let r = rpz™ + -+ and set 6 = (ry, /by )™ ™
replace ¢ by g+ ¢
replace r by r — dg. (Still f = gg + r, and degr has decreased.)
o (Terminate)
Return ¢ and r. (Now f = qg + r, and degr < degg.)

2. PRIMITIVE POLYNOMIALS AND THE GAUSS LEMMA

Definition 2.1. Let A be a UFD. The content of a nonzero polynomial f € A[X]
is any greatest common divisor of its coefficients. Thus the content is defined up to
multiplication by units. A polynomial is primitive if its content is 1.

Lemma 2.2 (Gauss). Let A be a UFD, and let f,g € A[X] be primitive. Then
their product fg is again primitive.

Proof. For any prime 7 of A, a lowest-index coefficient a; of f not divisible by 7
exists because f is primitive, and similarly for a lowest-index coefficient b; of g not
divisible by 7. The (i 4 j)-index coefficient of fg is an i + j + 1-fold sum,

aobitj + -+ ai—1bjr1 + aib; + aiy1bj 1 + aiyjbo.

The first 7 terms are divisible by 7 by definition of 4, and the similarly for the last
j terms. But the middle term a;b; is not, and hence the sum is not. O

Any nonzero polynomial f € A[X] takes the form

f= cff where ¢y is the content of f and f is primitive.
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And so the short calculation
Ja=cpfegg=cpeqfg
combines with the Gauss lemma to show that:
The content of the product is the product of the contents.

Naturally, the Gauss Lemma has an important consequence. On the face of
things, a polynomial f € A[X] could be irreducible and yet have a nontrivial
factorization in k[X] where k is the quotient field of A. However, only slightly more
generally than above, any nonzero polynomial g € k[X] takes the form

g=cgg, c4€k™, ge A[X] primitive.

Indeed, let
d
9= (ai/b)X",
i=0
and set by = lem{bp,--- ,bq}. Then byg has integral coefficients a;b,/b;. Next set
ag = ged{apbg/bo, - - - ,aqbg/ba}, so that the suitably-scaled polynomial
g = (bg/ag)yg

is primitive. Thus g = c4g as desired.
Now, if a nonzero polynomial f € A[X] has a nontrivial factorization f = gh
in k[X] then in fact

f=cgh, cek*, §,he A[X] primitive.

By the Gauss Lemma, §i~z is again primitive, and so ¢ € R. That is, the consequence
of the Gauss Lemma is:

Theorem 2.3. Let f € A[X] be nonzero. If f factors in k[X] then it factors
in A[X].
3. THE CRITERIA OF SCHONEMANN AND EISENSTEIN

Proposition 3.1 (Schénemann’s Criterion). Let A be a UFD, and let f(X) € A[X]
be momnic of positive degree n. Suppose that for some element a of A and some prime

ideal p of A,
f(X) = (X —a)" modp[X] and f(a) # 0mod p?.
Then f(X) is irreducible modulo p*[X] and hence f(X) is irreducible in A[X].
Especially the ideal p could take the form p = mA where © € A is prime.

Proof. We show the contrapositive statement, arguing that if f(X) is reducible
mod p?[X] then its reduction looks enough like (X — a)™ to force f(a) = 0 mod p2.
Specifically, suppose that
F(X) = fi(X) f2(X) mod p? [ X].
The reduction modulo p? agrees modulo p with the reduction modulo p,
[i(X)f2(X) = (X — a)" mod p[X],
and so (since we may take f1(X) and f2(X) to be monic) we have for i = 1,2,

fi(X)=(X —a)"modp[X], n; €Z".
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(Specifically, from f1(X)f2(X) = (X — a)™ in (A/p)[X] where the polynomials
now have their coefficients reduced modulo p, the same equality holds in k[X]
where k is the quotient field of the integral domain A/p. Because k[X] is a UFD,
fi(X) = (X —a)™ in k[X] for i = 1,2, but these equalities stand between elements
of (A/p)[X], giving the previous display.) Consequently f;(a) = O0modp fori = 1, 2,
and so the first display in the proof gives f(a) = 0mod p? as desired. O

Corollary 3.2 (Prime Cyclotomic Polynomials are Irreducible). The pth cyclo-
tomic polynomial
Op(X)=XP14 X +1
is irreducible.
Proof. The relation (X —1)®,(X) = XP — 1 gives
(X —1)®,(X) = (X — 1)’ mod pZ[ X].
Since Z[X|/pZ][X] ~ (Z/pZ)[X] is an integral domain, we may cancel to get
®,(X) = (X — 1)’ ' mod pZ[X].
Also, ®,(1) = p # 0mod p?Z. So the proposition applies. a

The argument for prime-power cyclotomic polynomials is essentially the same
since

e-1 Xr—1
By (X) = @y (X7 ) = 2

Corollary 3.3 (Eisenstein’s Criterion). Let A be a UFD, and consider a polynomial

fX)=X"+--+aX +a € A[X].
Suppose that for some prime ideal p of A,

ap €p, a1 € pay, ) an—1 €P,

ag ¢ p.
Then f is irreducible in A[X].
Proof. Because f(X) = X" modp[X] and f(0) # 0mod p?, the proposition applies
with a = 0. (]

In modern texts, Eisenstein’s Criterion is proved directly with no reference to
Schonemann’s Criterion, as follows. The product of two polynomials
g(X) =0 X+ + 01X +by € A[X], by #0,
MX)=cnX™+- +aX +c €AX], ¢n#0
is
l+m
gXORX) =D > bie; Xk
k=0 i+j=Fk
The constant term is bgcy, so if we are to have f(X) = g(X)h(X) then since
ao = boco

and ag contains exactly one power of m, we may assume by symmetry that bg is
divisible by one power of m and ¢y by none. Let by be the lowest-indexed coefficient
of g(X) not divisible by m. Then also

ar = bocy, + bicg—1 + -+ + brco
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is not divisible by 7, and so & = n. Thus the only possible factorization of f is
f(X) = cg(X) where ¢ € A is not a unit. But f is primitive, so such a factorization
is impossible.

Also, modern texts prove that prime cyclotomic polynomials are irreducible by
using Eisenstein’s Criterion, as follows. Since

O,(X)=XP T XP 24 X X

the finite geometric sum formula gives

XP -1
P, (X) =

P( ) X*l’
so that

. -1

(X+1)P-1 (D)X R i

D,(X +1)= e = lX = (le)X .
0

i=

Thus ®,(X + 1) satisfies Eisenstein’s Criterion at p by properties of the binomial
coefficients, making it irreducible over Z. Consequently, ®,(X) is irreducible: any
factorization ®,(X) = g(X)h(X) would immediately yield a corresponding factor-
ization ®,(X + 1) = g(X + 1)h(X + 1) since the mapping property of polynomials
says that replacing X by X + 1 gives an Z-linear endomorphism of Z[X], and in
fact an automorphism since the inverse map is obvious. But no such corresponding
factorization of ®,(X + 1) exists, so no factorization of ®,(X) exists either.

Note how much tidier the Schonemann argument is. See David Cox’s Janu-
ary 2011 Monthly article for the story of Schénemann’s and Eisenstein’s criteria.

4. POLYNOMIALS OVER A UFD

Theorem 4.1. Let A be a UFD. Then the polynomial ring A[X] is again a UFD.

Proof. Let k be the quotient field of A. Since k[X] is a UFD, the issue is only to
show that the unique factorization restricts to the subring A[X].
We have already shown that any nonzero polynomial g € k[X] takes the form

g=cgg, c¢g€k™, ge A[X] primitive.

Now let f € A[X] have degree at least 1. Then f factors uniquely into irreducibles
in k[X],
f=rh—fe

The factorization rewrites as
f=cifi--cfr, eache €k, each f; € A[X] irreducible and primitive.
Consolidate the constants to get
f=cfi--fr, cek*, each f; € A[X] irreducible and primitive.

The Gauss lemma says that fl e fr is again primitive, and thus c is the content
of f, an element of A,

f=cfi--f, c€A, each f; € A[X] irreducible and primitive.
A second factorization,

f=dgi--gs, de A, each g; € A[X] irreducible and primitive
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is the same as the first one in k[X]. Thus s = r and §; = ¢;f; with ¢; € k* for
each ¢. It quickly follows that dc; - - - ¢, = ¢, and the factorization is unique. (But
as always, unique means unique up to units.) O

Corollary 4.2. Let A be a UFD, and let n be a positive integer. Then the polyno-
mial ring A[X1,- -, X, is again a UFD.

As an example of some ideas in the writeup thus far, let k be a field, let n > 2
be an integer, let ag, - ,a,_1 be indeterminates over k, and consider the UFD

A= k[a07 t 7an—1]~

Its quotient field is K = k(ag, - - ,an—1), the field generated over k by the indeter-
minates, the field of rational expressions in the indeterminates. We want to show
that the general degree n polynomial over k,

JX)=X"4ap 1 X"+ 4+ a1X +ag,

is irreducible in K[X]. By Theorem 2.3 it suffices to show that f(X) is irreducible
in A[X]. But

A[X] = k[ao,"- ,an,l][X] = k‘[ao, s ,an,l,X],

and so it suffices to show that f(X) is does not factor in the UFD k[ag, - -+ , an—1, X].
Any such factorization would reduce modulo X to a factorization in the quotient
ring
B = k[ao, s ,CL7,,_1,X]/<X> ~ k[ao, s ,an_l].

But the reduction of f(X) in B is (after the isomorphism) simply ag. Thus the
reduction has no factorization, and we are done. (Alternatively, we could define
B’ =klag, - ,an—1,X]/{a1, - ,an—1) and apply the Eisenstein-Schénemann cri-
terion to the reduction X™ + ag of f(X) in B’.)

5. KRONECKER'S FACTORING ALGORITHM

Factoring in the integer ring 7Z is a finite process. The most naive method,
trial division, requires y/n steps to find a factor of n. The next proposition and
its corollary show, for example, that factorization in Z[X;,--- , X,] is also a finite
process.

Proposition 5.1. Let A be a UFD with a factoring algorithm. Then A[X] is again
a UFD with a factoring algorithm.

Proof. Let f(X) € A[X] have degree d. We may investigate only whether f has a
factor g of degree at most e = [d/2].

Consider the values f(ag), -+ , f(ae) for e41 distinct a-values. If f has a factor g
as above then g(a;) | f(a;) in A for i = 0,--- ,e. Algorithmically, each f(a;) is a
product of finitely many irreducible factors, giving finitely many possibilities for
each g(a;). Each possibility for the values g(ap),- - ,g(a.) determines a unique
polynomial g(X) € k[X] (where k is the field of quotients of A) having degree at
most e. Specifically, g can be computed by Lagrange interpolation,

9 =Y gad [] 22
i=0 vt

J=0
J#i




6 FACTORIZATION OF POLYNOMIALS

For each such g, the division algorithm in k[X] (where k is the field of quotients
of A) shows whether g is a factor of f in k[X] and the Gauss Lemma says that in
fact the division algorithm is showing us whether g is a factor of f in A[X]. O

In practice the algorithm is hopelessly inefficient, and much better algorithms
exist. The point here is only that an algorithm exists at all.

Corollary 5.2. Let A be a UFD with a factoring algorithm, and let n be a positive
integer. Then A[X1, -, X,] is again a UFD with a factoring algorithm.



