
THE THREE GROUP ISOMORPHISM THEOREMS

1. The First Isomorphism Theorem

Theorem 1.1 (An image is a natural quotient). Let

f : G −→ G̃

be a group homomorphism. Let its kernel and image be

K = ker(f), H̃ = im(f),

respectively a normal subgroup of G and a subgroup of G̃. Then there is a natural
isomorphism

f̃ : G/K ∼−→ H̃, gK 7−→ f(g).

Proof. The map f̃ is well defined because if g′K = gK then g′ = gk for some k ∈ K
and so

f(g′) = f(gk) = f(g)f(k) = f(g)ẽ = f(g).

The map f̃ is a homomorphism because f is a homomorphism,

f̃(gK g′K) = f̃(gg′K) by definition of coset multiplication

= f(gg′) by definition of f̃

= f(g)f(g′) because f is a homomorphism

= f̃(gK)f̃(g′K) by definition of f̃ .

To show that f̃ injects, it suffices to show that ker(f̃) is only the trivial element K
of G/K. Compute that if f̃(gK) = ẽ then f(g) = ẽ, and so g ∈ K, making gK = K

as desired. The map f̃ surjects because H̃ = im(f). �

A diagrammatic display of the theorem that captures its idea that an image is
isomorphic to a quotient is as follows:
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For a familiar example of the theorem, let

T : V −→W

be a linear transformation. The theorem says that there is a resulting natural
isomorphism

T̃ : V/nullspace(T ) ∼−→ range(T ).
The quotient vector space V/nullspace(T ) is the set of translates of the nullspace.
If we expand a basis of the nullspace,

{v1, · · · , vν} (where ν is the nullity of T ),
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to a basis of V ,
{v1, · · · , vν , vν+1, · · · , vn},

then a basis of the quotient (now denoting the nullspace N for brevity) consists of
the cosets

{vν+1 +N, · · · , vn +N},
Thus the isomorphism V/N

∼−→ T (V ) encompasses the basic result from linear
algebra that the rank of T and the nullity of T sum to the dimension of V . The
dimension of the original codomain W is irrelevant here.

Often the First Isomorphism Theorem is applied in situations where the original
homomorphism is an epimorphism f : G −→ G̃. The theorem then says that
consequently the induced map f̃ : G/K −→ G̃ is an isomorphism. For example,

• Since every cyclic group is by definition a homomorphic image of Z, and
since the nontrivial subgroups of Z take the form nZ where n ∈ Z>0, we
see clearly now that every cyclic group is either

G ≈ Z or G ≈ Z/nZ.

Consider a finite cyclic group,

G = 〈g〉, π : Z −→ G, π(1) = g, ker(π) = nZ.

Consider also a subgroup,

H = 〈gk〉.

Then π−1(H) = kZ, so that

H ≈ kZ/(kZ ∩ nZ) = kZ/lcm(k, n)Z.

The multiply-by-k map followed by a natural quotient map gives an epi-
morphsim Z −→ kZ/lcm(k, n)Z, and the kernel of the composition is
(lcm(k, n)/k)Z = (n/ gcd(k, n))Z. Thus

H ≈ Z/(n/ gcd(k, n))Z.

Hence the subgroup H = 〈gk〉 of the order-n cyclic group G = 〈g〉 has order

|〈gk〉| = n/ gcd(k, n).

Especially, H is all of G when gcd(k, n) = 1, and so G has ϕ(n) generators.
• The epimorphism | | : C× −→ R+ has as its kernel the complex unit circle,

denoted T,
T = {z ∈ C× : |z| = 1}.

The quotient group C×/T is the set of circles in C centered at the origin and
having positive radius, with the multiplication of two such circles returning
the circle whose radius is the product of the radii. The isomorphism

C×/T ∼−→ R+

takes each circle to its radius.
• The epimorphism exp : C −→ C× has as its kernel a dilated vertical copy

of the integers,
K = 2πiZ.
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Each element of the quotient group C/2πiZ is a translate of the kernel. The
quotient group overall can be viewed as the strip of complex numbers with
imaginary part between 0 and 2π, rolled up into a tube. The isomorphism

C/2πiZ ∼−→ C×

takes each horizontal line at height y to the ray making angle y with the
positive real axis. Loosely, the exponential maps shows us a view of the
tube looking “down” it from the end.
• The epimorphism det : GLn(R) −→ R× has as its kernel the special linear

group SLn(R). Each element of the quotient group GLn(R)/SLn(R) is
the equivalence class of all n-by-n real matrices having a given nonzero
determinant. The isomorphism

GLn(R)/SLn(R) ∼−→ R×

takes each equivalence class to the shared determinant of all its members.
• The epimorphism sgn : Sn −→ {±1} has as its kernel the alternating

group An. The quotient group Sn/An can be viewed as the set

{even, odd},
forming the group of order 2 having even as the identity element. The
isomorphism

Sn/An
∼−→ {±1}

takes even to 1 and odd to −1.

2. The Second Isomorphism Theorem

Theorem 2.1. Let G be a group. Let H be a subgroup of G and let K be a normal
subgroup of G. Then there is a natural isomorphism

HK/K
∼−→ H/(H ∩K), hK 7−→ h(H ∩K).

Proof. Routine verifications show that HK is a group having K as a normal sub-
group and that H ∩K is a normal subgroup of H. The map

H −→ HK/K, h 7−→ hK

is a surjective homomorphism having kernel H ∩K, and so the first theorem gives
an isomorphism

H/(H ∩K) ∼−→ HK/K, h(H ∩K) 7−→ hK.

The desired isomorphism is the inverse of the isomorphism in the display. �

Before continuing, it deserves quick mention that if G is a group and H is a
subgroup and K is a normal subgroup then HK = KH. Indeed, because K is
normal,

HK = {hK : h ∈ H} = {Kh : h ∈ H} = KH.

We will cite this little fact later in the writeup.

As an example of the second ismorphism theorem, consider a general linear
group, its special linear subgroup, and its center,

G = GL2(C), H = SL2(C), K = C×I2.
Then

HK = G, H ∩K = {±I2}.
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The isomorphism given by the theorem is therefore

GL2(C)/C×I2
∼−→ SL2(C)/{±I2}, C×m 7−→ {±m}.

The groups on the two sides of the isomorphism are the projective general and
special linear groups. Even though the general linear group is larger than the
special linear group, the difference disappears after projectivizing,

PGL2(C) ∼−→ PSL2(C).

3. The Third Isomorphism Theorem

Theorem 3.1 (Absorption property of quotients). Let G be a group. Let K be a
normal subgroup of G, and let N be a subgroup of K that is also a normal subgroup
of G. Then

K/N is a normal subgroup of G/N,

and there is a natural isomorphism

(G/N)/(K/N) ∼−→ G/K, gN · (K/N) 7−→ gK.

Proof. The map

G/N −→ G/K, gN 7−→ gK

is well defined because if g′N = gN then g′ = gn for some n ∈ N and so because
N ⊂ K we have g′K = gK. The map is a homomorphism because

gN g′N = gg′N 7−→ gg′K = gK g′K.

The map clearly surjects. Its kernel is K/N , showing that K/N is a normal sub-
group of G/N , and the first theorem gives an isomorphism

(G/N)/(K/N) ∼−→ G/K, gN · (K/N) 7−→ gK,

as claimed. �

For example, let n and m be positive integers with n | m. Thus

mZ ⊂ nZ ⊂ Z

and all subgroups are normal since Z is abelian. The third isomorphism theorem
gives the isomorphism

(Z/mZ)/(nZ/mZ) ∼−→ Z/nZ, (k +mZ) + nZ 7−→ k + nZ.

And so the following diagram commutes because both ways around are simply
k 7→ k + nZ:

Z

vvmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQ

Z/mZ // (Z/mZ)/(nZ/mZ) // Z/nZ.

In words, if one reduces modulo m and then further reduces modulo n, then the
second reduction subsumes the first.
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4. Preliminary Lemma

Lemma 4.1. Let f : G −→ G̃ be an epimorphism, and let K be its kernel. Then
there is a bijective correspondence

{subgroups of G containing K} ←→ {subgroups of G̃}
given by

H −→ f(H),

f−1(H̃)←− H̃.
And the bijection restricts to

{normal subgroups of G containing K} ←→ {normal subgroups of G̃}.

Proof. If H is a subgroup of G containing K then f(H) is a subgroup of G̃, and

f−1(f(H)) = {g ∈ G : f(g) ∈ f(H)} ⊃ H.
To show equality, note that if for any g ∈ G,

f(g) ∈ f(H) =⇒ f(g) = f(h) for some h ∈ H
=⇒ f(h−1g) = ẽ

=⇒ h−1g ∈ K
=⇒ g ∈ hK ⊂ HK = H since H contains K.

On the other hand, if H̃ is a subgroup of G̃ then f−1(H̃) is a subgroup of G
containing K. The containment f(f−1(H̃)) ⊂ H̃ is clear, and the containment is
equality because f is an epimorphism.

Now suppose that H is a normal subgroup of G containing K. Since f is an
epimorphism, any g̃ ∈ G̃ takes the form f(g), and so

g̃f(H)g̃−1 = f(g)f(H)f(g−1) = f(gHg−1) = f(H),

showing that f(H) is a normal subgroup of G̃. Conversely, suppose that H̃ is a
normal subgroup of G̃. Then for any g ∈ G,

f(gf−1(H̃)g−1) = f(g)f(f−1(H̃))f(g)−1 = f(g)H̃f(g)−1 = H̃,

and so gf−1(H̃)g−1 = f−1(H̃), showing that f−1(H̃) is a normal subgroup ofG, �

As a particular case of the lemma, if G is a group and K is a normal subgroup
and Q = G/K, then since the natural projection G −→ Q is an epimorphism, the
subgroups of G containing K are in bijective correspondence with the the subgroups
of Q, and the correspondence preserves normality.

5. Solvable Groups

Definition 5.1. A finite group G is solvable if there is a series

1 = G0 CG1 CG2 C · · ·CGn−1 CGn = G

where each quotient Gi/Gi−1 for i ∈ {1, · · · , n} is cyclic.

Theorem 5.2. Let G be a finite group. If G is solvable then any subgroup of G
and any quotient group of G are solvable. Conversely, if K is a normal subgroup
of G and Q = G/K, and K and Q are solvable, then G is solvable.
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Proof. Suppose that G is solvable. Let H be any subgroup of G, not necessarily
normal. Define

Hi = H ∩Gi, i ∈ {0, · · · , n}.
Then for any i ∈ {1, · · · , n} and any hi ∈ Hi we have, since H is a group and
Gi−1 CGi,

hiHi−1h
−1
i = hi(H ∩Gi−1)h−1

i ⊂ H ∩Gi−1 = Hi−1.

That is, each Hi−1 is normal in Hi,

1 = H0 CH1 CH2 C · · ·CHn−1 CHn = H.

The quotients from this series are

Hi/Hi−1 = (H ∩Gi)/(H ∩Gi−1).

Apply the second isomorphism theorem, substituting

Gi for G, H ∩Gi for H, Gi−1 for K,

and the result is
Hi/Hi−1

∼−→ (H ∩Gi)Gi−1/Gi−1.

Since (H∩Gi)Gi−1 is a subgroup of Gi containing Gi−1, the quotient is a subgroup
of Gi/Gi−1 by the lemma. Any subgroup of a cyclic group is again cyclic, and so
H is solvable.

Still assuming that G is solvable, let K be any normal subgroup of G. For any
i ∈ {1, · · · , n}, since Gi−1 CGi and K CGi we have for any gi ∈ Gi,

giGi−1K = Gi−1giK = Gi−1Kgi,

and also, as discussed immediately after the second isomorphism theorem, we have
Gi−1K = KGi−1, showing that K normalizes Gi−1K. In sum, Gi−1K C GiK.
Also, the natural map

Gi −→ GiK/Gi−1K

surjects and is trivial on Gi−1, and so it factors through the quotient, still surjecting,

Gi/Gi−1 −→ GiK/Gi−1K.

Now define
Qi = GiK/K, i ∈ {0, · · · , n}.

By the third isomorphism theorem, each Qi−1 is normal in Qi,

1 = Q0 CQ1 CQ2 C · · ·CQn−1 CQn = Q.

The quotients from this series are, by the third isomorphism theorem,

Qi/Qi−1 = (GiK/K)/(Gi−1K/K) ∼−→ GiK/Gi−1K.

Thus Qi/Qi−1 is an image of the cyclic group Gi/Gi−1. Any image of a cyclic
group is again cyclic, and so Q is solvable.

No longer assuming that G is solvable, let K be a normal subgroup of G, let
Q = G/K, and suppose that K and Q are solvable. Then we have a chain

1 = K0 CK1 CK2 C · · ·CKm−1 CKm = K

with cyclic quotients Ki/Ki−1, and we have a chain

1 = Qm CQm+1 C · · ·CQn−1 CQn = Q,
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again with cyclic quotients. By the lemma, the second chain gives rise to a chain
in G,

K = Gm CGm+1 C · · ·CGn−1 CGn = G.

The quotients from this series are, by the third isomorphism theorem,

Gi/Gi−1
∼−→ (Gi/K)/(Gi−1/K) = Qi/Qi−1,

which are cyclic, and so the proof is complete. �

There are tidier ways to establish Theorem 5.2. Here we did so using almost no
tools in order to showcase the isomorphism theorems.


