
COSETS IN LAGRANGE’S THEOREM AND IN GROUP

ACTIONS

1. Lagrange’s Theorem

Let G be a group and H a subgroup, not necessarily normal.

Definition 1.1 (Left H-equivalence). Two group elements g, g′ ∈ G are left H-
equivalent if they produce the same left coset of H,

g ∼L g′ if gH = g′H.

The verification that left H-equivalence is indeed an equivalence relation on G
is straightforward. Thus left H-equivalence partitions G into disjoint equivalence
classes, the left cosets,

G =
⊔

gH (disjoint union of cosets, not union over all g ∈ G).

The left coset space is the set of left cosets,

G/H = {gH} (each element of the set is itself a coset).

Also, one shows instantly that

g ∼L g′ ⇐⇒ g−1g′ ∈ H, g, g′ ∈ G.

Naturally we could also define right H-equivalence and repeat the ideas,

G =
⊔

Hg, H\G = {Hg}, g ∼R g′ ⇐⇒ g′g−1 ∈ H.

Now, for any g ∈ G we have a bijection between H and gH,

H ←→ gH, h←→ gh.

And similarly for H and right cosets Hg. Consequently all cosets have the same
cardinality,

|gH| = |Hg| = |H|, g ∈ G.

From the decompositions G =
⊔

gH =
⊔

Hg we then get

|G| = |G/H| · |H| = |H\G| · |H|.
Define the index of H in G to be the shared cardinality of the coset spaces,

[G : H] = |G/H| = |H\G|.
If G is finite then [G : H] is a positive integer. But by the previous-but-first display,

[G : H] = |G|/|H|.
And thus:

Theorem 1.2 (Lagrange). Let G be a finite group, and let H be a subgroup of G.
Then |H| divides |G|.

Lagrange’s Theorem has many corollaries:

• If G is a prime-order group then it is cyclic.
• if G is a finite group and a ∈ G then |a| | |G|.
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• (Euler) Let n ∈ Z>0. Then aϕ(n) = 1 modn if gcd(a, n) = 1.
• (Fermat) Let p be prime. Then ap−1 = 1 mod p if p - a.

2. Multiplicity of Indices

Let A be a supergroup of B, in turn a supergroup of C,

C ⊂ B ⊂ A.

Thus

A =
⊔
i

aiB, [A : B] = |{ai}|

and

B =
⊔
j

bjC, [B : C] = |{bj}|.

Essentially immediately,

A =
⊔
i,j

aibjC.

Indeed, the union in the previous display is disjoint because if a′ib
′
jC = aibjC then

the cosets a′iB and aiB are nondisjoint, making them equal, so that a′i = ai, and
then we have b′jC = bjC, giving b′j = bj . Since the union is disjoint and the (i, j)th
coset contains the product aibj , no two such products are equal unless they involve
the same ai and the same bj . The multiplicativity of indices follows,

[A : C] = |{aibj}| = |{ai}| |{bj}| = [A : B] [B : C].

3. Cosets and Actions

Consider a transitive action

G× S −→ S.

Here G is a group, S is a set, and the action takes any point of S to any other.
Fix a point x ∈ S, and let Gx be its isotropy subgroup,

Gx = {g ∈ G : gx = x}.

As we have discussed, Gx is indeed a subgroup of G, but it need not be normal.
There is a natural set bijection between the resulting left coset space and the

set,

G/Gx ←→ S, gGx ←→ gx.

To see this, recall that G/Gx is the disjoint union of the left cosets,

G =
⊔

gGx,

and for any g, g′ ∈ G,

g′Gx = gGx ⇐⇒ g−1g′ ∈ Gx ⇐⇒ g−1g′x = x ⇐⇒ g′x = gx.

That is, each coset collectively moves x to a well-defined point of S, and distinct
cosets move x to distinct points.

For an example, let

G = SL2(R),

S = H = {z ∈ C : Im(z) > 0}.
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Then G acts on S by the formula[
a b
c d

]
(z) =

az + b

cz + d
.

One key fact here is that([
a b
c d

] [
a′ b′

c′ d′

])
(z) =

[
a b
c d

]([
a′ b′

c′ d′

]
(z)

)
,

and another is that

Im

(
az + b

cz + d

)
=

Im(z)

|cz + d|2
.

Now take our particular point to be

x = i.

Then its isotropy groups is the 2-by-2 special orthogonal group,

Gx =

{[
a b
c d

]
∈ SL2(R) :

[
a b
c d

]
(i) = i

}
=

{[
a b
−b a

]
∈ SL2(R)

}
= SO(2).

Thus the complex upper half plane has a completely real group-theoretic description
as a coset space,

H ≈ SL2(R)/SO(2).

No claim is being made here that the quotient space carries a group structure.


