COSETS IN LAGRANGE’S THEOREM AND IN GROUP
ACTIONS

1. LAGRANGE’S THEOREM
Let G be a group and H a subgroup, not necessarily normal.

Definition 1.1 (Left H-equivalence). Two group elements g,g' € G are left H-
equivalent if they produce the same left coset of H,

g~ryg ifgH=gH.
The verification that left H-equivalence is indeed an equivalence relation on G

is straightforward. Thus left H-equivalence partitions G into disjoint equivalence
classes, the left cosets,

G= |_|gH (disjoint union of cosets, not union over all g € G).
The left coset space is the set of left cosets,
G/H ={gH} (each element of the set is itself a coset).
Also, one shows instantly that
g~y = g g et g4 €G
Naturally we could also define right H-equivalence and repeat the ideas,
G=|_|Hg, H\G = {Hyg}, g~rg = ¢gg'eH
Now, for any g € G we have a bijection between H and gH,
H<+— gH, h<+— gh.
And similarly for H and right cosets Hg. Consequently all cosets have the same
cardinality,
lgH| = |Hg| = |H|, g€G.
From the decompositions G =| |gH = | | Hg we then get
G| =[G/H]|- |H| = [H\G| - |H|.
Define the index of H in G to be the shared cardinality of the coset spaces,
G : H] = |G/H| = |[H\G|.
If G is finite then [G : H] is a positive integer. But by the previous-but-first display,
(G : H] = |G|/|H].
And thus:
Theorem 1.2 (Lagrange). Let G be a finite group, and let H be a subgroup of G.
Then |H| divides |G].
Lagrange’s Theorem has many corollaries:

e If G is a prime-order group then it is cyclic.
e if G is a finite group and a € G then |a] | |G].
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e (Euler) Let n € Zso. Then a*™ = 1modn if ged(a,n) = 1.
o (Fermat) Let p be prime. Then a?~! = 1modp if p 1 a.

2. MULTIPLICITY OF INDICES

Let A be a supergroup of B, in turn a supergroup of C,
CCBCA

Thus
A= UaiB7 [A: B] = {ai}|

and

B=|]bC. [B:C]=I{t}:

Essentially immediately,
A= |_| aibjC.
i,

Indeed, the union in the previous display is disjoint because if a;b;C' = a;b;C then
the cosets a;B and a;B are nondisjoint, making them equal, so that a = a;, and
then we have b.C' = b;C, giving b; = b;. Since the union is disjoint and the (i, j)th
coset contains the product a;b;, no two such products are equal unless they involve
the same a; and the same b;. The multiplicativity of indices follows,

[A: C) = [{aibj}| = {ai}| [{b;}] = [A: B][B: C].

3. COSETS AND ACTIONS

Consider a transitive action
GxS—S.

Here G is a group, S is a set, and the action takes any point of S to any other.
Fix a point x € S, and let G, be its isotropy subgroup,

Gy, ={9€G:gx=uz}
As we have discussed, G, is indeed a subgroup of G, but it need not be normal.
There is a natural set bijection between the resulting left coset space and the
set,
G/Gy +— S, ¢G, +— gux.
To see this, recall that G/G, is the disjoint union of the left cosets,

G = |_|ng,
and for any g, ¢’ € G,
GG =9G, —= g ¢ €CG, — g 'yr=2 < ¢x=gz.

That is, each coset collectively moves = to a well-defined point of S, and distinct
cosets move z to distinct points.
For an example, let

G = SLZ(R)7
S=H={ze€C:Im(z) > 0}.
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Then G acts on S by the formula

{CCL Z}(z)aerb

One key fact here is that
a b a b a b a b
(L2 a]le e )o-[2 27 ¢]o)
and another is that
- az+b\  Im(z)
cz+d) ez +d?

Now take our particular point to be

T =1.

Then its isotropy groups is the 2-by-2 special orthogonal group,

sz{[i S]ESLQ(R):{Z Z](i)zi}

([ 5 ¢]emer

=50(2).

Thus the complex upper half plane has a completely real group-theoretic description
as a coset space,

H ~ SLy(R) /SO(2).

No claim is being made here that the quotient space carries a group structure.



