CYCLIC GROUPS

1. DEFINITION

Recall that if G is a group and S is a subset of G then the notation

()

signifies the subgroup of G generated by S, the smallest subgroup of G that con-
tains S.
A group is cyclic if it is generated by one element, i.e., if it takes the form

G = (a) for some a.

For example, (Z,+) = (1). However, (2) = 2Z is a proper subgroup of Z, showing
that not every element of a cyclic group need be a generator.

2. CHARACTERIZATION

Since Gallian discusses cyclic groups entirely in terms of themselves, I will discuss
them using an idea that will be ubiquitous in this course, the idea of a characterizing
mapping property.

Proposition 2.1 (Characterizing Mapping Property of Cyclic Groups). A group
G is cyclic if and only if it is a homomorphic image of 7.

Proof. If G = (a) then the map
7Z— G, n+—a"

is a homomorphism (since a"t™ = a"a™ for all n,m € Z) whose image is G.
Conversely, if f : Z — G is an epimorphism then let a = f(1). Every g € G takes
the form g = f(n) for some n € Z. If n > 0 then

g=f0++1)=[f1)og:oq f(1) = (f(1))" = a"
And the same formula holds if n < 0 (exercise). Thus G = {(a). O

3. CONSEQUENCES OF THE CHARACTERIZATION

Immediately from the proposition, any cyclic group is abelian and any homo-
morphic image of a cyclic group is again cyclic.

Also, we argue that any subgroup of a cyclic group is again cyclic. Indeed, let
G be cyclic, so that there is an epimorphism

f:Z— @G,

and let H C G be a nontrivial subgroup (the trivial subgroup is trivially cyclic:
{e} = (e)). Then f~1(H) is a nontrivial subgroup of Z, and as such, it takes the
form
f~YH)=nZ for some positive integer n.
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(Specifically, let n be the the least positive element of f~1(H); then f~'(H) con-
tains nZ, and the division algorithm shows that it contains nothing more.) The
multiply-by-n map on Z,
[n]:Z —7Z, k+— nk,
is a homomorphism whose image is nZ, and so the composite
foln]:Z2—72—G

is a homomorphism whose image is H. Thus H is cyclic.

4. PossiBLE CycLIC GROUPS
If G is cyclic and f : Z — @ is an epimorphism then ker(f) is a subgroup of Z.
If ker(f) = {0} then f is an isomorphism, making G essentially a copy of Z via f,
n+——a" where a = f(1).
Also, a=! = f(—1) generates G, and {a,a"!} are the only two generators.
If ker(f) = nZ where n > 0 then we have the set-relation
G =/{ea,a® - ,a" '} where a= f(1).

That is, a™ = e is the first positive power of a that is trivial, and in general the
group law in G is

ab = aFmedn ke 7.

That is, the map
k— a® where a = f(1)

now makes G a copy of (Z/nZ,+).

5. SUBGROUPS

Since any infinite cyclic group is a copy of Z, its subgroups are copies of the

subgroups of Z,
H = (a™) for some positive integer n.

And distinct positive integers n give distinct such subgroups.

Now consider a finite cyclic group G of order n, so that there exists an epimor-
phism

f:Z— @G, Xker(f)=nZ.

Let a = f(1) as usual. Let H be a subgroup of G. Then f~1(H) is a supergroup
of ker(f) in Z, so that

f7YH)=4dZ where 0<d|n.
Thus the subgroup is
H= (%, 0<d|n,
and we see that the order of the subgroup divides the order of the group,
|H| =n/d.

On the other hand, for any m € {0,1,--- ,n—1}, the mth power of a generates a
subgroup H = (a™) of G regardless of whether m | n. From the previous paragraph
we know that also H takes the form H = (a?) where d | n. Thus

a™ =d"  for some k,
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so that (since a™ = e)
m = kdmodn for some k,
showing that d | m since d | kd and d | n. Thus d | ged(m,n). But also,

a® = d*™  for some k,

so that
d=kmmodn for some k,
showing that ged(m,n) | d since ged(m,n) | km and ged(m,n) | n. Thus d =
ged(m,n). In sum for the finite case, changing the notation slightly:
For each positive divisor d of n there is one order-d subgroup of G,
generated by any element a™ such that ged(m,n) = n/d.

The question of how many generators a cyclic group has is independent of the
question of whether the cyclic group is a subgroup of some other cyclic group.
(Gallian pushes these two issues together in a way that I find confusing.) For any
positive integer n, if (a) is cyclic of order n then its generators are its elements a*
where k € Z/nZ and ged(k,n) = 1. Thus the number of generators is ¢(n) where
@ is Euler’s totient function.



