
THE INTEGERS

1. Divisibility and Factorization

Without discussing foundational issues or even giving a precise definition, we
take basic operational experience with the integers for granted. Specifically the set
of integers is notated

Z = {0,±1,±2, . . . },
with no concern—at least for now—about the meaning of the ellipsis “. . . ”. How-
ever, the point to be emphasized is that we view the integers not only as a set
but as a set equipped with two operations, addition and multiplication. That is,
the integers are an algebraic structure. Really the structure is (Z,+, ·) rather than
merely Z, but once we are aware that the currency of algebra is structures rather
than sets, such notation is pointlessly cumbersome.

The product of any two nonzero integers is again nonzero. Consequently if the
product of a nonzero integer with a second integer is zero then the second integer
is itself zero. This observation leads to the cancellation law:

For all a, b, c ∈ Z, if ab = ac and a 6= 0 then b = c.

Indeed, the given equality says that a(b− c) = 0, and a 6= 0, so b− c = 0.

The first substantive result about the integers is the division algorithm, going
back to Euclid.

Theorem 1.1. Let a and b be integers with b 6= 0. There exist unique integers q
and r such that

a = qb + r, 0 ≤ r < |b|.

Proof. A fundamental property of the integers is that any nonempty set of nonneg-
ative integers contains a least element. The set

{a− qb : q ∈ Z}

is readily seen to contain nonnegative elements (e.g., if b > 0 then a− qb ≥ 0 for all
integers q ≤ a/b), so it contains a least nonnegative element r = a−qb, r ≥ 0. Thus
r − |b| < 0. The displayed conditions in the theorem follow. As for uniqueness,
suppose that

qb + r = q′b + r′, r, r′ ∈ {0, · · · , |b| − 1}.
Then

r′ − r = (q − q′)b, r′ − r ∈ {−|b|+ 1, · · · , |b| − 1}.
The only multiple of b in {−|b|+ 1, · · · , |b| − 1} is 0. Thus r′ = r and then q = q′

by the cancellation law. �

Let a and b be integers. If a = qb for some integer q then b divides a and a is
divisible by b. This condition is notated

b | a.
1
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(For example, the only integer divisible by 0 is 0. However, since 0 = q0 for every
integer q, no meaningful rational value can be assigned to the “quotient” 0/0.)

Proposition 1.2. Let a and b be integers, not both zero. Consider the set of
Z-linear combinations of a and b,

I(a, b) = {ka + `b : k, ` ∈ Z}.

Let

g = the least positive element of I(a, b).

Then g is the greatest common divisor of a and b, meaning that

g | a, g | b, (d | a and d | b) =⇒ d | g.

The notation is

g = gcd(a, b).

Proof. Easy calculations show that I(a, b) is closed under Z-linear combination,{
(ka + `b) + (k′a + `′b) = (k + k′)a + (` + `′)b

m(ka + `b) = (mk)a + (m`)b

}
for all k, k′, `, `′,m ∈ Z.

(Here the slogan is Linear combinations of linear combinations are linear combi-
nations.) Write a = qg + r where 0 ≤ r < g. Since r = a − qg lies in I(a, b)
and 0 ≤ r < g, the definition of g as the least positive element of I(a, b) shows
that r = 0. Thus g | a, and similarly g | b.

For any integer d, even-easier calculations show that the set I(d) = dZ of Z-linear
combinations of d is closed under Z-linear combination,{

kd + k′d = (k + k′)d

m(kd) = (mk)d

}
for all k, k′,m ∈ Z.

But I(d) is the set of integers that d divides. So if d | a and d | b then d | g since g
is a Z-linear combination of a and b. �

The letter I in the notations I(a, b) and I(d) stands for the mathematical term
ideal . In mathematical parlance ideal is a noun. Later in the course we will learn
explicitly about ideals, but already here it is worth noting that the ideals I(a, b)
and I(d) are algebraic structures having the property of closure under linear combi-
nations whereas the sets {a, b} and {d} have no such property. The closure property
of the algebraic structures I(a, b) and I(d) is what makes the flow of ideas in the
proof so smooth.

As an example of finding a greatest common divisor, abbreviate the notations
I(a, b) and I(d) to (a, b) and (d), and compute

(826, 1890) = (826, 1890− 2 · 826)

= (238, 826) = (238, 826− 3 · 238)

= (112, 238) = (112, 238− 2 · 112)

= (14, 112) = (14, 112− 8 · 14)

= (0, 14) = (14).
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Thus gcd(826, 1890) = 14. The process just demonstrated is the Euclidean algo-
rithm. And furthermore, we can backtrack to express the gcd as a linear combina-
tion of the two given numbers,

14 = 238− 2 · 112

= 238− 2 · (826− 3 · 238)

= 7 · 238− 2 · 826

= 7 · (1890− 2 · 826)− 2 · 826

= −16 · 826 + 7 · 1890.

This process shows that we know how to solve any equation of the form

ax + by = c,

where a, b, c ∈ Z are the given coefficients and we seek integer solutions (x, y).
Solutions exist if and only if gcd(a, b) | c, in which case we can find one particular
solution via the Euclidean algorithm, as above. All other solutions differ from the
particular solution by solutions to the homogenized equation ax + by = 0, which
is easy to solve: after dividing a and b by their gcd we get a′x + b′y = 0 where
gcd(a′, b′) = 1, and so the solutions are (x, y) = n(b′,−a′) for all n ∈ Z.

Definition 1.3. Let p be a positive integer greater than 1. Then

• p is irreducible if

the only positive divisors of p are 1 and p.

• p is prime if

for all a, b ∈ Z, p | ab =⇒ p | a or p | b.

Note that irreducible means to us what prime means to most people, while prime
means to us something else, perhaps unfamiliar. However, we next show that in
the context of the integers, the two words mean the same thing after all.

Proposition 1.4. Let p be a positive integer greater than 1. Then p is irreducible
if and only if p is prime.

Proof. Let p be irreducible, and suppose that a and b are integers such that p | ab.
If p | a then we are done. If p - a then p and a share no positive divisor except 1,
and their greatest common divisor 1 is a linear combination of them,

1 = kp + `a for some k, ` ∈ Z.

Consequently

b = kpb + `ab for some k, ` ∈ Z.
Because p | ab by hypothesis, the right side is divisible by p, and hence so is the
left side. That is, if p | ab and p - a then p | b as desired.

Let p be prime and suppose that d is a positive divisor of p. Thus kd = p for
some positive integer k, and so p | k or p | d.

• If k = ep then the equality kd = p becomes edp = p, so that ed = 1, forcing
d = 1.
• If d = ep then the equality kd = p becomes kep = p, so that ke = 1, forcing
k = 1 and thus d = p.

�
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The proof that irreducible implies prime requires the division algorithm, but the
proof that prime implies irreducible does not. Later in the course we will revisit
these issues in more generality. In many environments that are otherwise similar
to the integers, irreducible does not imply prime.

The equivalence of irreducibility and primality in Z is necessary to prove that
every nonzero integer factors uniquely as a sign-term times a product of irreducibles.

Theorem 1.5 (Unique Factorization of Integers). Every nonzero integer has a
unique factorization

n = ±pe11 · · · pegg , g ≥ 0, p1 < · · · < pg,

where the pi are irreducible.

Proof. We may assume that n is positive.
(Existence.) The integer n = 1 takes the desired form. For n > 1, if n is

irreducible then it takes the desired form. Otherwise n factors as n = n1n2 where
the positive integers n1 and n2 are smaller than n, so each of them is a product
of finitely many irreducibles by induction, and hence so is n. If n < 0 then either
n = −1 or −n is a product of finitely many irreducibles.

(Uniqueness.) It suffices to consider positive integers. The only case to worry
about is two nontrivial factorizations,

n =

g∏
i=1

peii =

h∏
j=1

q
fj
j , g, h ≥ 1.

Since p1 divides the first product it divides the second one, and hence (p1 being
prime) it divides one of the qj , and hence (qj being irreducible) it equals qj . And
qj must be the smallest prime on the right side, for otherwise q1, which by the
argument just given must equal some pi, can not do so, being smaller than qj = p1.
Thus p1 = q1. To see that e1 = f1, divide the equality through by min{e1, f1} to
get an equality in which p1 doesn’t divide one side, hence doesn’t divide the other
side either, giving the result. Now we have an equality

n/pe11 =

g∏
i=2

peii =

h∏
j=2

q
fj
j ,

and we are done by induction on n. �

Some of the issues here may seem needlessly complicated, but they are forced
on us by familiar elementary contexts. For example:

• Math 112 exercises have to dance around the question
For what positive integers n is Z/nZ a field?

Everybody knows morally that the answer is, For prime n. However, the
problem is that for any n ∈ Z+, short, natural arguments show that

n is prime ⇐⇒ Z/nZ is a field =⇒ n is irreducible.

But to show that Z/nZ is a field only if n is irreducible requires the fact that
irreducibles are prime in Z, which in turn relies on the division algorithm
and the expression of the gcd as a linear combination.

• Similarly, any argument that there is no square root of 2 in Q tacitly makes
use of unique factorization. Ultimately the argument boils down to
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Let r ∈ Q satisfy r2 = 2. Then r = 2er′ where e ∈ Z and
r′ ∈ Q has no 2’s in its numerator or its denominator. Thus
2 = r2 = 22e(r′)2. But this is impossible because there are no 2’s
in (r′)2 and so the left side has one power of 2 while the right side
has an even number of 2’s.

The problem with the argument is that without unique factorization, a
number with one power of 2 conceivably could equal a number with an even
number of 2’s. Any side-argument that no integer can be simultaneously
odd and even must essentially give the argument that the division algorithm
exists, specialized to b = 2.

2. The Integers modulo n

Let n be a positive integer. We want to define clock algebra modulo n, meaning
addition and multiplication that wrap around at n, returning to 0. Thus it is
initially tempting to work with the set of nonnegative remainders modulo n,

{0, 1, · · · , n− 1},

and to define a new addition ⊕ on this set by the rule

a⊕ b = r where a + b = qn + r and 0 ≤ r < n,

and similarly for multiplication. Although this idea can be made to work, it is the
wrong idea. For one thing, carrying out the division algorithm for each addition or
multiplication is constraining—we might prefer to throw away all multiples of n at
the end of a long calculation instead. For another thing, if n is odd then it might
be more natural to work symmetrically about 0 by using the set

{−(n− 1)/2, · · · ,−1, 0, 1, · · · , (n− 1)/2}.

Now the wraparound occurs at (n + 1)/2, returning to −(n− 1)/2, but clearly the
situation is essentially the same as wrapping around from n to 0.

The right idea is to view any two integers that differ by a multiple of n as
equivalent, since the algebra of the integers gives rise to sensible algebra at the
level of equivalence. The idea presents two psychological obstacles:

• The basic elements to be worked with are now equivalence classes such as

{0,±n,±2n, · · · } = nZ,
{1, 1± n, 1± 2n, · · · } = 1 + nZ,
{2, 2± n, 2± 2n, · · · } = 2 + nZ.

That is, each set in the display is to be treated as one unit , not as an
infinitude.

• The question is not how to work with the equivalence classes, since of course
the only feasible definitions are

(a + nZ)⊕ (b + nZ) = a + b + nZ,
(a + nZ)⊗ (b + nZ) = ab + nZ.

The question, which can take some thought to wrap one’s mind around,
is whether the definitions are meaningful . The problem is that while an
integer a determines an equivalence class a+nZ, an equivalence class arises
from infinitely many choices of a; but the right sides in the previous display
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made specific choices of elements a and b in the two equivalence classes in
order to define their sum and product.

(As an example of how a process’s dependence on choices can render it ill-defined,
suppose that we have a function

f : {Math 332 students} × {Math 332 students} −→ {Math 332 students},

i.e., given an ordered pair of students, the mechanism specifies a student. Group
students into equivalence classes by hair-color, and try to define a corresponding
function

F : {Math 332 hair-colors} × {Math 332 hair-colors} −→ {Math 332 hair-colors}

as follows:

• Given colors (c1, c2), pick equivalence class elements, a student s1 having
hair-color c1 and a student s2 having hair-color c2.
• Let s3 = f(s1, s2), a student.
• Let F (c1, c2) be the equivalence class (hair-color) of s3.

Obviously F (c1, c2) depends not only on c1 and c2 but also on the choices of s1
and s2. It is not a well-defined function of its two inputs.)

To show that the definitions do make sense, consider two different descriptions
of each of two equivalence classes,

a + nZ = a′ + nZ,
b + nZ = b′ + nZ.

This means that

a′ − a ∈ nZ,
b′ − b ∈ nZ,

so that (since the ideal nZ is closed under linear combinations)

(a′ + b′)− (a + b) = (a′ − a) + (b′ − b) ∈ nZ,
a′b′ − ab = a′(b′ − b) + (a′ − a)b ∈ nZ,

and thus

a + b + nZ = a′ + b′ + nZ,
ab + nZ = a′b′ + nZ.

In other words, the sum and the product of the two equivalence classes is indepen-
dent of the classes’s descriptions,{

a + nZ = a′ + nZ
b + nZ = b′ + nZ

}
=⇒

{
(a + nZ)⊕ (b + nZ) = (a′ + nZ)⊕ (b′ + nZ)

(a + nZ)⊗ (b + nZ) = (a′ + nZ)⊗ (b′ + nZ)

}
.
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Although verifying that the definitions are sensible is tedious, the payoff is that
their naturality guarantees that their algebra behaves well. For instance, the addi-
tion of equivalence classes inherits associativity from the addition of integers,

((a + nZ)⊕ (b + nZ))⊕ (c + nZ)

= (a + b + nZ)⊕ (c + nZ)

= (a + b) + c + nZ
= a + (b + c) + nZ
= (a + nZ)⊕ (b + c + nZ)

= (a + nZ)⊕ ((b + nZ)⊕ (c + nZ)).

And similarly for the distributive law,

(a + nZ)⊗ ((b + nZ)⊕ (c + nZ))

= (a + nZ)⊗ (b + c + nZ)

= a(b + c) + nZ
= ab + ac + nZ
= (ab + nZ)⊕ (cc + nZ)

= ((a + nZ)⊗ (b + nZ))⊕ ((a + nZ)⊗ (c + nZ)).

Next we lighten the notation to hide the process of dragging around copies of nZ
that are ultimately immaterial:

Let the symbol-string a = bmodn mean that n | b− a.

It is straightforward to verify that equality modulo n is an equivalence relation,

(1) For all a ∈ Z, a = amodn.
(2) For all a, b ∈ Z, if a = bmodn then b = amodn.
(3) For all a, b, c ∈ Z, if a = bmodn and b = cmodn then a = cmodn,

and that the equivalence classes are exactly the sets that we have been manipulating
tortuously. In the new notation, our verification that the operations modulo n are
sensible showed that that for all integers a, a′, b, b′,{

a = a′modn

b = b′modn

}
=⇒

{
a + b = a′ + b′modn

ab = a′b′modn

}
.

That is, we may freely add and multiply modulo n with no regard to whether the
inputs or the outputs are reduced back into {0, · · · , n − 1} along the way. The
results will always be equivalent, and we may reduce the answer at the end if we
so choose.

Definition 2.1. Let n be a positive integer. The set of equivalence classes of
integers modulo n, along with the algebra (addition and multiplication, associativity
and commutativity of both operations, additive and multiplicative identities, and
additive inverse) that they inherit from the integers is called the ring of integers
modulo n and denoted Z/nZ.

(Again, Z/nZ tacitly denotes (Z/nZ,+, ·) or even (Z/nZ,⊕,⊗).)
Thus now we may freely think of the elements of Z/nZ as {0, 1, · · · , n− 1} or as

{−(n−1)/2, · · · , (n−1)/2}, or as any other set of equivalence class representatives.
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For example, a famous and difficult argument by Gauss involving an odd prime p
uses nonzero representatives modulo p spaced four apart and straddling 0,

{±2,±6,±10, · · · ,±(2p− 4)}.
And if during the course of doing algebra we move outside our chosen set of repre-
sentatives, we can safely continue to calculate and translate back into the set only
when the calculation is complete.

Proposition 2.2. Let n be a positive integer. An integer a is multiplicatively
invertible modulo n if and only if gcd(a, n) = 1.

Proof. To say that a is multiplicatively invertible modulo n is to say that

ab = 1 modn for some integer b,

which is to say that
n | ab− 1 for some integer b,

which is to say that

ab− 1 = kn for some integers b, k,

which is to say that

ab + kn = 1 for some integers b, k.

The last condition is gcd(a, n) = 1. �

A bit strangely, 0 is multiplicatively invertible modulo 1. The tiny point here is
that in the modulo 1 world all integers are equal, making 0 = 1.

3. Fermat’s Little Theorem and Euler’s Generalization

Definition 3.1. Euler’s totient function,

ϕ : Z>0 −→ Z>0,

is
ϕ(n) = the number of multiplicatively invertible elements in Z/nZ.

Thus ϕ(1) = 1 (as explained a moment ago at the end of the previous section)
and ϕ(p) = p− 1 if p is prime. Also, it is not hard to count Euler’s totient function
of a prime power by eliminating all multiples of the prime,

ϕ(pe) = pe − pe−1 = pe(1− 1/p), p prime, e ∈ Z>0.

Soon we will show that also

ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1,

giving a complete formula for ϕ,

ϕ(n) = n
∏
p|n

(1− 1/p).

Let n be a positive integer. Consider some fixed invertible element a in Z/nZ.
Let

{x1, x2, · · · , xϕ(n)}
be the invertible elements of Z/nZ. Then also

{ax1, ax2, · · · , axϕ(n)}
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is the same set. Indeed, each axi is invertible modulo n, the inverse of the product
being the product of the inverses, and if axi = axj modn then multiplying through
by the inverse of a modulo n gives xi = xj modn. Thus multiplying the elements
of the second set together produces the same result as multiplying the elements of
the first set together,

aϕ(n)x = xmodn, where x = x1x2 · · ·xϕ(n).

The element x is invertible modulo n, and so multiplying the equality through by
its inverse gives

aϕ(n) = 1 modn if gcd(a, n) = 1.

In particular,

ap−1 = 1 mod p if p - a.

The last equality is Fermat’s Little Theorem, and the equality before it is Euler’s
Generalization.

Note that already in this first unit of the course, we are thinking in sufficiently
structural terms that the generalization is more natural to prove than the original
result. Fermat’s Little Theorem can also be proved by induction: Certainly 1p−1 =
1 mod p, and if ap−1 = 1 mod p then ap = amod p and so

(a + 1)p = ap +

(
p

1

)
ap−1 + · · ·+

(
p

p− 1

)
a + 1

= ap + 1 mod p since the binomial coefficients are 0 mod p

= a + 1 mod p since ap = amod p.

Thus, so long as a+1 hasn’t reached 0 mod p, cancellation gives (a+1)p−1 = 1 mod p
and the induction is complete. This argument feels more cluttered by auxiliary
details than the previous one, but it points to a far-reaching ideas in its own right:
if p = 0 then not only is the pth power of a product inevitably the product of the
pth powers, (ab)p = apbp, but also the pth power of a sum is the sum of the pth
powers, (a + b)p = ap + bp. The fact that raising to the pth power preserves both
algebra operations in any environment where p = 0 (not only in Z/pZ) leads to a
great deal of rich mathematics.

Fermat’s Little Theorem and Euler’s Generalization would be facilitated by a
fast raise-to-power method modulo n, i.e., a fast modular exponentiation algorithm.
Such an algorithm is as follows. Let positive integers a, e, and n be given. The task
is to compute the reduced power ae %n quickly. (Here x%n denotes the element
of {0, · · · , n − 1} that equals x modulo n. Thus x%n is not an element of Z/nZ
since such elements are equivalence classes rather than class representatives.) We
emphatically do not want to carry out e− 1 multiplications.

• (Initialize) Set (x, y, f) = (1, a, e).
• (Loop) While f > 0, do as follows:

– If f%2 = 0 then replace (x, y, f) by (x, y2 %n, f/2),
– otherwise replace (x, y, f) by (xy %n, y, f − 1).

• (Terminate) Return x.

To see that the algorithm works by seeing how it works, represent the exponent e
in binary, say

e = 2g + 2h + 2k, 0 ≤ g < h < k.
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The algorithm successively computes

(1, a, 2g + 2h + 2k)

(1, a2
g

, 1 + 2h−g + 2k−g)

(a2
g

, a2
g

, 2h−g + 2k−g)

(a2
g

, a2
h

, 1 + 2k−h)

(a2
g+2h , a2

h

, 2k−h)

(a2
g+2h , a2

k

, 1)

(a2
g+2h+2k , a2

k

, 0),

and then it returns the first entry, which is indeed ae. The algorithm is strikingly
efficient both in speed and in space. Especially, the operations on f (halving it
when it is even, decrementing it when it is odd) are very simple in binary.

Fast modular exponentiation is not only for computers. For example, to compute
237 % 149, proceed as follows,

(1, 2; 37)→ (2, 2; 36)→ (2, 4; 18)→ (2, 16; 9)→ (32, 16; 8)

→ (32,−42; 4)→ (32,−24; 2)→ (32,−20; 1)→ (105,−20; 0).

And so the answer is 105.

As an example of using Fermat’s Little Theorem and fast modular exponentia-
tion, suppose that p is prime and p = 3 mod 4. Suppose that a 6= 0 mod p is a square
modulo p, that is, a = b2 mod p for some b, but we don’t know what b is. Note that
p + 1 is divisible by 4, and compute, working modulo p and using Fermat’s Little
Theorem for the second-to-last equality, that(

a(p+1)/4
)2

=
(
b(p+1)/2

)2
= bp+1 = bp−1b2 = b2 = a.

Thus a(p+1)/4, which we can find quickly by fast modular exponentiation, is a square
root of a modulo p. There is still the question of whether a given a has a square
root modulo p at all. Answering that question quickly is a matter of the famous
Quadratic Reciprocity theorem.

4. The Sun-Ze Theorem

Let m and n be positive integers whose greatest common divisor is 1. (Such a
pair of integers is called relatively prime or coprime.) Associate to m and n the
two algebraic structures

Z/mZ× Z/nZ and Z/mnZ.

For the first structure, the algebraic operations are naturally defined componentwise
(now writing “(m)” rather than “modm” and likewise for n),

(a (m), b (n)) + (a′ (m), b′ (n)) = (a + a′ (m), b + b′ (n)),

(a (m), b (n))(a′ (m), b′ (n)) = (aa′ (m), bb′ (n)).

Theorem 4.1 (Sun-Ze). Let m and n be coprime positive integers. Thus there
exist integers k and ` such that

km + `n = 1.
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The maps

f : Z/mnZ −→ Z/mZ× Z/nZ, a (mn) 7−→ (a (m), a (n))

and

g : Z/mZ× Z/n −→ Z/mnZ (a (m), b (n)) 7−→ `na + kmb (mn),

are mutually inverse algebraic isomorphisms. That is, they are mutually inverse
set-bijections, and they preserve the algebraic operations of the sets. (The precise
meaning of preserve the operations will be explained as part of the proof.)

The Sun-Ze Theorem is often called the Chinese Remainder Theorem. A brief
notation for its contents is

Z/mnZ ≈ Z/mZ× Z/nZ.

Since the multiplicatively invertible elements of Z/mZ×Z/nZ are the pairs where
each element is multiplicatively invertible, the Sun-Ze Theorem has in consequence
a formula that was asserted earlier,

ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1,

Proof. The map

f : Z/mnZ −→ Z/mZ× Z/nZ, a (mn) 7−→ (a (m), a (n))

is meaningful: although we may translate a by any multiple of mn without affecting
a (mn), doing so has no affect on a (m) or a (n) either. To see that f of a sum of
values in Z/mnZ is the sum of the corresponding f -values in Z/mZ×Z/nZ, compute

f(a (mn) + b (mn)) = f(a + b (mn))

= (a + b (m), a + b (n))

= (a (m), a (n)) + (b (m), b (n))

= f(a (mn)) + f(b (mn)).

And similarly for the product, i.e., f(a (mn)·b (mn)) = f(a (mn))·f(b (mn)), where
the first product is set in Z/mnZ and the second in Z/mZ× Z/nZ.

Recall the integers k, ` such that km + `n = 1. The map

g : Z/mZ× Z/n −→ Z/mnZ (a (m), b (n)) 7−→ `na + kmb (mn),

is also meaningful: translating a by any multiple of m translates `na + kmb by a
multiple of mn, and similarly for translating b by any multiple of n. To see that
g preserves algebra just as f does, note first that because km + `n = 1, it follows
that

k2m2 = km(1− `n) = kmmodmn,

and similarly `2n2 = `nmodmn. Now compute,

g((a (m), b (n))(a′ (m), b′ (n))) = g(aa′ (m), bb′ (n))

= `naa′ + kmbb′ (mn)

= `2n2aa′ + k2m2bb′ (mn)

=
(
`na + kmb (mn)

)(
`na′ + kmb′ (mn)

)
= g(a (m), b (n)) g(a′ (m), b′ (n)).

And similarly for the sum.
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One composition of f and g is the identity on Z/mnZ,

g(f(a (mn))) = g(a (m), a (n))) = (`n + km) · a (mn) = a (mn).

And since km = 1 modn and `n = 1 modm, the other composition is the identity
on Z/mZ× Z/nZ,

f(g(a (m), b (n))) = f(`na + kmb (mn))

= (`na + kmb (m), `na + kmb (n))

= (a (m), b (n)).

In sum, f and g preserve algebra and they are mutual inverses. Thus Z/mnZ and
Z/mZ× Z/nZ biject to one another as algebraic structures. �


