MEROMORPHIC CONTINUATION AND FUNCTIONAL
EQUATION OF RIEMANN ZETA

The Riemann zeta function is initially defined as a sum,

oo
= Zn‘s, Re(s) > 1.
n=1
This writeup gives Riemann’s argument that the closely related function

£(s) = 7/?I'(s/2)¢(s), Re(s) >1

has a meromorphic continuation to the full s-plane, analytic except for simple poles
at s = 0 and s = 1, and the continuation satisfies the functional equation

(s)=¢&(1—s), seC.

The continuation is no longer defined by the sum.

The functional equation says that the behavior of the extended £(s) on the
open left half plane {Re (s) < 0} mirrors its reflection on the open right half plane
{Re (s) > 1}, where the original definition of {(s) as a sum is in effect. That is, £(s)
on the open left half plane gives nothing new. What is truly new is the behavior of
the extended £(s) on the critical strip {0 < Re(s) < 1}. Riemann showed that the
zeros of £(s) in the critical strip give significant information about the distribution
of prime numbers.

The Riemann zeta function generalizes vastly, as do all the ideas of this writeup.
The resulting extensions ubiquitously encode arithmetic information in their be-
havior on a critical strip and/or on the critical strip boundary.

Fourier transform. The space of measurable and absolutely integrable functions
on R is

L'(R) = {measurable f : R — C : / |f(z)|dx < oo}
zER
Any f € £LY(R) has a Fourier transform f : R — C given by
fla) = fly)e > dy.
yeR

Although the Fourier transform is continuous, it need not belong to £}(R). But if
also [ o |f( )|2dx<oothenf€R\f x)|2dr < .

The Gaussian; Fourier transform of the Gaussian and its dilations. Let f €
LY(R) be the Gaussian function,

f(z) = e
We need its Fourier transform. Compute that

]E(I) _ /OO e*'n'(y2+2iy:r:7:52)677712dy _ 677r9£2 /OO 677T(y+im)2dy.
Yy
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Complex contour integration shows that the integral is just the Gaussian integral
2
JZ5 e ™ dy, and this is 1. Thus

f=[ for the Gaussian f.

Also, for any function h € £1(R) and any positive number r, the Fourier transform
of the dilated function h,.(x) = h(zr) is h.(x) = 7~ h(zr~1). So in particular

the Fourier transform of f(xt'/?) is t=1/2f(xt=/%), t > 0.

The theta function; its expression as a sum of dilated Gaussians. Let H denote
the complex upper half plane. The theta function on H is

¥9:H—C, I(r) = Z emin’T
nez
The sum converges very rapidly away from the real axis, making absolute and
uniform convergence on compact subsets of H easy to show, and thus defining a
holomorphic function. Specialize to 7 = it with ¢ > 0 and again let f be the
Gaussian. The theta function along the positive imaginary axis is a sum of dilated
Gaussians,
9(it) = > f(nt'/?), t>0.
neEZ

This is a sum of quickly decreasing functions whose graphs narrow as n grows.

Poisson summation; the transformation law of the theta function. For any func-
tion h € L!(R) such that the sum >, h(x+d) converges absolutely and uniformly
on compact sets and is infinitely differentiable as a function of z, the Poisson sum-

mation formula is

Z h(x+n) = Z h(n)e2™ne.

nez neZ
The idea here is that the left side is the periodicization of h, and then the right
side is the Fourier series of the left side, because the nth Fourier coefficient of the
periodicization of h is the nth Fourier transform of h itself. When x = 0 the Poisson
summation formula specializes to

> h(n) = h(n).
nez nez

And especially, if h(x) if the Gaussian f(zt'/?) then Poisson summation with z = 0

shows that
Zf(ntl/z) — 412 Zf(”t_l/2)7
nez neZ

which is to say,

(1) I(i/t) = tY290it), t>0.

Riemann zeta as the Mellin transform of theta. With these preliminaries in hand,
the properties of the Riemann zeta function are established by examining the Mellin
transform of (essentially) the theta function. In general, the Mellin transform of a
function f : Rt — C is the integral

o) = [ st
t=0 t
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for s-values such that the integral converges absolutely. For example, the Mellin
transform of e~ is T'(s/2). Also, the Mellin transform of the function

St = L@t) ~ 1), t>0

=1

3

is

& 2y g0 dl
g(s) _ e~ tts/2

Since ¥(it) converges to 1 as t — oo, the transformation law (1) shows that as t — 0,
¥(it) grows at the same rate as t~1/2 and therefore the integral g(s) converges at
its left endpoint if Re (s) > 1. And since the convergence of 9¥(it) to 1 as t — oo is
rapid, the integral converges at its right end for all values of s. Rapid convergence
lets the sum pass through the integral in the previous display to yield, after a change
of variable,

o0

gls) = (wn?)~*/2 /OO e*ttsﬂ% =77°?I(s/2)¢(s), Re(s)> 1.

n=1 t=0
Thus, when Re(s) > 1, the integral g(s) is the function £(s) mentioned at the
beginning of this writeup. On the other hand, recall that the function whose Mellin
transform we took is essentially the theta function,

Semit = (i)~ 1), t>0.

n=1

So this paragraph has in fact shown that the modified zeta function
€(s) = m*/2T(5/2)C(s), Re(s) > 1

has an integral representation as the Mellin transform of the theta function,

£(s) = 3 /t(x;(ﬁ(z’t) _ 1)ts/2%, Re(s) > 1.

Thinking in these terms, the factor 7=%/2T'(s/2) is intrinsically associated to ((s),
making £(s) the natural function to consider. Modern adelic considerations make
the factor even more natural, but those ideas are beyond our current scope.

Meromorphic continuation. The integral representation of (s) provides its mero-
morphic continuation and functional equation. Compute part of the integral by
splitting off a term, replacing ¢ by 1/t, using the transformation law (1) for 9(it),
and splitting off another term to resymmetrize,

1t 1t 1
7/ (0(it) — 1)t$/2% == ﬁ(it)tsﬂ% -
t

2 Ji=o t=0 $
1 [ dt 1
== I/t 2= — =
2 Ji—1 (/1) t S
1 [ dt 1
= / ﬁ(it)t(lfs)ﬂi _
t=1 t s

D= N

/Oo(ﬂ(it) - 1)7:(1*8)/2@ L
=1 t s 1—s
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Combine this with the remainder of the integral representation of £(s) to get

&(s) = 1/00(19(1'@ —1)(t¥% + t<1*5>/2)@ LN Re(s) > 1

2 /i t s 1-3s’ '
But since the integral in the last display now has as its left endpoint of integration
t = 1 rather than ¢ = 0, it is entire in s, making the right side meromorphic
everywhere in the s-plane with its only poles being simple poles at s = 0 and
s = 1. That is, the new description of £ is no longer constrained to the domain

{Re(s) > 1},

1 [ dt 1 1
- - it) — 1 s/2 (1=s)/22Y )
€)= [ - dom oo sec

The new description extends £ to a meromorphic function on all of C. The definition
of the extended function no longer makes reference to ((s) as a sum.

Functional equation. Finally, the right side of the boxed display is clearly in-
variant under the substitution s — 1 — s. That is, the meromorphic continuation
of £(s) to the full s-plane satisfies the functional equation

]5(175):5(5), sec\




