
COMPLEX TORI AS ELLIPTIC CURVES

This writeup shows how complex tori C/Λ can also be viewed as cubic curves.
These cubic curves are called elliptic despite not being ellipses, due to a connection
between them and the arc length of an actual ellipse. The presentation here is
terse, so you may want to consult a relevant complex analysis text.

1. The Weierstrass ℘-function and its Derivative

The meromorphic functions on a complex torus are what relate it to a cubic

curve. Given a lattice Λ, the meromorphic functions f : C/Λ −→ Ĉ on the torus

are naturally identified with the Λ-periodic meromorphic functions f : C −→ Ĉ on
the plane. Exercise 1 derives some basic properties of these functions in general.
The most important specific example is the Weierstrass ℘-function

℘(z) =
1

z2
+
∑
λ∈Λ

′
(

1

(z − λ)2
− 1

λ2

)
, z ∈ C, z /∈ Λ.

(The primed summation means to omit λ = 0.) Subtracting 1/λ2 from 1/(z − λ)2

makes the summand roughly z/λ3, cf. the sketched proof of Proposition 1.1 to
follow, so the sum converges absolutely and uniformly on compact subsets of C
away from Λ. Correcting the summand this way prevents the terms of the sum from
being permuted when z is translated by a lattice element, so ℘ doesn’t obviously
have periods Λ. But its derivative

℘′(z) = −2
∑
λ∈Λ

1

(z − λ)3

clearly does have periods Λ, and combining this with the fact that ℘ is an even func-
tion quickly shows that in fact ℘ has periods Λ as well (Exercise 2). It turns out
that ℘ and ℘′ are the only basic examples we need, because the field of meromor-
phic functions on C/Λ is C(℘, ℘′), the rational expressions in these two functions.
Because the Weierstrass ℘-function depends on the lattice Λ as well as the vari-
able z we will sometimes write ℘Λ(z) and ℘′Λ(z); in particular for lattices Λτ we
will write ℘τ (z) and ℘′τ (z).

Eisenstein series are functions of lattices,

Gk(Λ) =
∑
λ∈Λ

′ 1

λk
, k > 2 even.

They satisfy the homogeneity condition Gk(mΛ) = m−kGk(Λ) for all m ∈ C×.
Part (a) of the next result shows that Eisenstein series appear in the Laurent
expansion of the Weierstrass ℘-function for Λ. Part (b) relates the functions ℘(z)
and ℘′(z) in a cubic equation whose coefficients are also Eisenstein series.

Proposition 1.1. Let ℘ be the Weierstrass function with respect to a lattice Λ.
Then
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(a) The Laurent expansion of ℘ is

℘(z) =
1

z2
+

∞∑
n=2
n even

(n+ 1)Gn+2(Λ)zn

for all z such that 0 < |z| < inf{|λ| : λ ∈ Λ \ {0}}.
(b) The functions ℘ and ℘′ satisfy the relation

(℘′(z))2 = 4(℘(z))3 − g2(Λ)℘(z)− g3(Λ)

where g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).
(c) Let Λ = λ1Z⊕ λ2Z and let λ3 = λ1 + λ2. Then the cubic equation satisfied

by ℘ and ℘′, y2 = 4x3 − g2(Λ)x− g3(Λ), is

y2 = 4(x− e1)(x− e2)(x− e3), ei = ℘(λi/2) for i = 1, 2, 3.

This equation is nonsingular, meaning its right side has distinct roots.

Proof. (Sketch.) For (a), if |z| < |λ| then

1

(z − λ)2
− 1

λ2
=

1

λ2

(
1

(1− z/λ)2
− 1

)
and the geometric series squares to

∑∞
n=0(n + 1)zn/λn, making the summand∑∞

n=1(n + 1)zn/λn+2. The double sum
∑′
λ

∑∞
n=1(n + 1)zn/λn+2 can be rear-

ranged to
∑∞
n=1

∑′
λ(n + 1)zn/λn+2 =

∑∞
n=1(n + 1)Gk+2(Λ)zn, and Gk+2(Λ) = 0

when n is odd.
For (b), one uses part (a) to show that the nonpositive terms of the Laurent

series of both sides are equal. Specifically, because

℘(z) =
1

z2
+ 3G4(Λ)z2 + 5G6(Λ)z4 +O(z6)

(where “O” means “a quantity on the order of”) and

℘′(z) = − 2

z3
+ 6G4(Λ)z + 20G6(Λ)z3 +O(z5),

a little algebra shows that both (℘′(z))2 and 4(℘(z))3 − g2(Λ)℘(z) − g3(Λ) work
out to 4/z6 − 24G4(Λ)/z2 − 80G6(Λ) + O(z2). So their difference is holomorphic
and Λ-periodic, therefore bounded, therefore constant, therefore zero because it is
O(z2) as z → 0.

For (c), because ℘′ is odd, it has zeros at the order 2 points of C/Λ: if z ≡ −z
(mod Λ) then ℘′(z) = ℘′(−z) = −℘′(z) and thus ℘′(z) = 0. Letting Λ = λ1Z⊕λ2Z,
the order 2 points are zi = λi/2 with ℘′(zi) = 0 for i = 1, 2, 3. The relation
between ℘ and ℘′ from (b) shows that the corresponding values xi = ℘(zi) for
i = 1, 2, 3 are roots of the cubic polynomial pΛ(x) = 4x3 − g2(Λ)x − g3(Λ), so
it factors as claimed. Each xi is a double value of ℘ because ℘′(zi) = 0, and
because ℘ has degree 2, meaning it takes each value twice counting multiplicity
(see Exercise 1(b)), this makes the three xi distinct. That is, the cubic polynomial
pΛ has distinct roots. �
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2. Complex Tori and Elliptic Curves

Part (b) of the proposition shows that the map z 7→ (℘Λ(z), ℘′Λ(z)) takes non-
lattice points of C to points (x, y) ∈ C2 satisfying the nonsingular cubic equation
of part (c), y2 = 4x3 − g2(Λ)x− g3(Λ). The map bijects because generally a value
x ∈ C is taken by ℘Λ twice on C/Λ, that is, x = ℘Λ(±z + Λ), and then the two
y-values satisfying the cubic equation are ℘′(±z + Λ) = ±℘′(z + Λ). The excep-
tional x-values where y = 0 occur at the order-2 points of C/Λ, so they are taken
once by ℘Λ as necessary. The map extends to all z ∈ C by mapping lattice points
to a suitably defined point at infinity. In sum, for every lattice the associated
Weierstrass ℘-function and its derivative give a bijection

(℘, ℘′) : complex torus −→ elliptic curve.

For example, the value g3(i) = 0 shows that the complex torus C/Λi bijects to
the elliptic curve with equation y2 = 4x3 − g2(i)x. Similarly the complex torus
C/Λζ3 (where again ζ3 = e2πi/3) bijects to the elliptic curve with equation y2 =
4x3−g3(ζ3). See Exercise 3 for some values of the functions ℘ and ℘′ in connection
with these two lattices.

The map (℘, ℘′) transfers the group law from the complex torus to the elliptic
curve. To understand addition on the curve, let z1 + Λ and z2 + Λ be nonzero
points of the torus. The image points (℘(z1), ℘′(z1)) and (℘(z2), ℘′(z2)) on the
curve determine a secant or tangent line of the curve in C2, ax + by + c = 0.
Consider the function

f(z) = a℘(z) + b℘′(z) + c.

This is meromorphic on C/Λ. When b 6= 0 it has a triple pole at 0 + Λ and zeros at
z1 + Λ and z2 + Λ, and Exercise 1(c) shows that its third zero is at the point z3 + Λ
such that z1 +z2 +z3 +Λ = 0+Λ in C/Λ. When b = 0, f has a double pole at 0+Λ
and zeros at z1 + Λ and z2 + Λ, and Exercise 1(c) shows that z1 + z2 + Λ = 0 + Λ
in C/Λ. In this case let z3 = 0 + Λ so that again z1 + z2 + z3 + Λ = 0 + Λ,
and because the line is vertical view it as containing the infinite point (℘(0), ℘′(0))
whose second coordinate arises from a pole of higher order than the first. Thus for
any value of b the elliptic curve points on the line ax + by + c = 0 are the points
(xi, yi) = (℘(zi), ℘

′(zi)) for i = 1, 2, 3. Because z1 + z2 + z3 + Λ = 0 + Λ on the
torus in all cases, the resulting group law on the curve is:

Collinear triples sum to zero.

Recall that a holomorphic isomorphism of complex tori takes the form

z + Λ 7→ mz + Λ′ where Λ′ = mΛ.

Because ℘mΛ(mz) = m−2℘Λ(z) and ℘′mΛ(mz) = m−3℘′Λ(z), the corresponding
isomorphism of elliptic curves is

(x, y) 7→ (m−2x,m−3y),

or equivalently the substitution

(x, y) = (m2x′,m3y′),

changing the cubic equation y2 = 4x3 − g2x − g3 associated to Λ to the equation
y2 = 4x3 −m−4g2x −m−6g3 associated to Λ′. Suitable choices of m (Exercise 3
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again) normalize the elliptic curves associated to C/mΛi and C/mΛζ3 to have
equations

y2 = 4x(x− 1)(x+ 1), y2 = 4(x− 1)(x− ζ3)(x− ζ2
3 ).

The appearance of Eisenstein series as coefficients of a nonsingular curve lets us
prove as a corollary to Proposition 1.1 that the discriminant function has no zeros
in the upper half plane.

Corollary 2.1. The function ∆ is nonvanishing on H. That is, ∆(τ) 6= 0 for all
τ ∈ H.

Proof. For any τ ∈ H, specialize the lattice Λ in the proposition to Λτ . By part (c)
of the proposition, the cubic polynomial pτ (x) = 4x3 − g2(τ)x− g3(τ) has distinct
roots. Exercise 4 shows that ∆(τ) is the discriminant of pτ up to constant multiple
(hence its name), so ∆(τ) 6= 0. �

Not only does every complex torus C/Λ lead via the Weierstrass ℘-function to
an elliptic curve

(1) y2 = 4x3 − a2x− a3, a3
2 − 27a2

3 6= 0

with a2 = g2(Λ) and a3 = g3(Λ), but the converse holds as well.

Proposition 2.2. Given an elliptic curve (1), there exists a lattice Λ such that
a2 = g2(Λ) and a3 = g3(Λ).

Proof. The case a2 = 0 and the case a3 = 0 are Exercise 5. For the case a2 6= 0
and a3 6= 0, because j : H −→ C surjects there exists τ ∈ H such that j(τ) =
1728a3

2/(a
3
2 − 27a2

3). This gives

g2(τ)3

g2(τ)3 − 27g3(τ)2
=

a3
2

a3
2 − 27a2

3

,

or, after taking reciprocals and doing a little algebra,

(2)
a3

2

g2(τ)3
=

a2
3

g3(τ)2
.

For any nonzero complex number λ2, let λ1 = τλ2 and Λ = λ1Z⊕ λ2Z. Then

g2(Λ) = λ−4
2 g2(τ) and g3(Λ) = λ−6

2 g3(τ).

Thus we are done if we can choose λ2 such that

λ−4
2 = a2/g2(τ) and λ−6

2 = a3/g3(τ).

Choose λ2 to satisfy the first condition, so that λ−12
2 = a3

2/g2(τ)3. Then by (2)
λ−6

2 = ±a3/g3(τ), and replacing λ2 by iλ2 if necessary completes the proof. �

It follows that any map of elliptic curves (x, y) 7→ (m−2x,m−3y), changing a
cubic equation y2 = 4x3 − a2x− a3 to the equation y2 = 4x3 −m−4a2x−m−6a3,
comes from the holomorphic isomorphism of complex tori z + Λ 7→ mz + Λ′ where
a2 = g2(Λ), a3 = g3(Λ), and Λ′ = mΛ. This makes the map of elliptic curves an
isomorphism as well.

Thus complex tori (Riemann surfaces, complex analytic objects) and elliptic
curves (solution sets of cubic polynomials, algebraic objects) are interchangeable.
With the connection between them in hand, let the term complex elliptic curve be a
synonym for complex torus and call meromorphic functions with periods Λ elliptic
functions with respect to Λ.
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Exercises.

(1) Let E = C/Λ be a complex elliptic curve where Λ = λ1Z ⊕ λ2Z, and let
f be a nonconstant elliptic function with respect to Λ, viewed either as
a meromorphic function on C with periods Λ or as a meromorphic func-
tion on E. Let P = {x1λ1 + x2λ2 : x1, x2 ∈ [0, 1]} be the parallelogram
representing E when its opposing boundary edges are suitably identified,
and let ∂P be the counterclockwise boundary of P . Because f has only
finitely many zeros and poles in E, some translation t + ∂P misses them
all. This exercise establishes some necessary properties of f . Showing that
these properties are sufficient for an appropriate f to exist requires more
work.

(a) Compute that 1/(2πi)
∫
t+∂P

f(z)dz = 0. It follows by the Residue
Theorem that the sum of the residues of f on E is 0. In particular there is
no meromorphic function on E with one simple pole and so the Weierstrass
℘-function, with its double pole at Λ, is the simplest nonconstant elliptic
function with respect to Λ.

(b) Compute that 1/(2πi)
∫
t+∂P

f ′(z)dz/f(z) = 0. It follows by the
Argument Principle that f has as many zeros as poles, counting multiplicity.
Replacing f by f − w for any w ∈ C shows that f takes every value the
same number of times, counting multiplicity. In particular the Weierstrass
℘-function on E takes every value twice.

(c) Compute that 1/(2πi)
∫
t+∂P

zf ′(z)dz/f(z) ∈ Λ. Show that this inte-

gral is also
∑
x∈E νx(f)x where νx(f) is the order of f at x, meaning that

f(z) = (z− x)νx(f)g(z) with g(x) 6= 0. Note that νx(f) = 0 except at zeros
and poles of f , so the sum is finite. Thus parts (b) and (c) combine to show
that for any nonconstant meromorphic function f on E,∑

x∈E
νx(f) = 0 in Z and

∑
x∈E

νx(f)x = 0 in E.

(2) Let Λ = λ1Z ⊕ λ2Z be a lattice and let ℘ be its associated Weierstrass
℘-function.

(a) Show that ℘ is even and that ℘′ is Λ-periodic.
(b) For i = 1, 2 show that the function ℘(z + λi) − ℘(z) is some con-

stant ci by taking its derivative. Substitute z = −λi/2 to show that ci = 0.
Conclude that ℘ is Λ-periodic.

(3) Let Λ = Λi. The derivative ℘′ of the corresponding Weierstrass function
has a triple pole at 0 and simple zeros at 1/2, i/2, (1+i)/2. Because iΛ = Λ
it follows that

℘(iz) = ℘iΛ(iz) = i−2℘(z) = −℘(z).

Show that in particular ℘((1+ i)/2) = 0. This is a double zero of ℘ because
also ℘′((1 + i)/2) = 0, making it the only zero of ℘ as a function on C/Λ.

Because Λ = Λ (complex conjugation) it also follows that ℘(z) = ℘(z),
so that ℘(1/2) is real, as is ℘(i/2) = −℘(1/2). Compute some dominant
terms of ℘(1/2) and ℘(i/2) to show that ℘(1/2) is the positive value. For
what m does the complex torus C/mΛ correspond to the elliptic curve with
equation y2 = 4x(x− 1)(x+ 1)?
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Reason similarly with Λ = Λζ3 to find the zeros of the corresponding
Weierstrass function ℘ and to show that ℘(1/2) is real. For what m does
the complex torus C/mΛ correspond to the elliptic curve with equation
y2 = 4(x− 1)(x− ζ3)(x− ζ2

3 )?
(4) For τ ∈ H let pτ (x) = 4x3 − g2(τ)x − g3(τ). Show that the discriminant

of pτ equals ∆(τ) up to constant multiple, where ∆ is the cusp form of
weight 12.

(5) Show that when a2 = 0 in Proposition 2.2 the desired lattice is Λ = mΛζ3
for a suitably chosen m. Prove the case a3 = 0 in Proposition 2.2 similarly.


