SIMPLE PROOF OF THE PRIME NUMBER THEOREM

This writeup is drawn from a writeup by Paul Garrett for his complex analysis course,

```
http://www-users.math.umn.edu/~garrett/m/complex/notes_2014-15/
```

09_prime_number_theorem.pdf

Especially, the bibliography of the source writeup contains relevant papers of Chebyshev, Erdős, Garrett, Hadamard, Newman, de la Vallée Poussin, Riemann, Selberg, and Wiener.

The prime-counting function, a function of a real variable, is

$$
\pi(x)=|\{p: p \leq x\}| .
$$

That is, $\pi(x)$ equals the number of prime numbers that are at most x. The Prime Number Theorem states that

$$
\pi(x) \sim \frac{x}{\log (x)}
$$

meaning that $\lim _{x \rightarrow \infty} \pi(x) /(x / \log (x))=1$.
The Chebyshev theta function, also a function of a real variable, is

$$
\vartheta(x)=\sum_{p \leq x} \log p
$$

A quick argument shows that $\vartheta(x)=\mathcal{O}(x)$, meaning that $\vartheta(x) \leq c x$ for some c and all large x; in fact, the argument produces such a c and the inequality holds for all x. A basic lemma of asymptotics specializes to show that if $\vartheta(x) \sim x$, meaning that $\lim _{x \rightarrow \infty} \vartheta(x) / x=1$, then $\pi(x) \sim x / \log x$, giving the Prime Number Theorem. Thus the main work of this writeup is to go from $\vartheta(x)=\mathcal{O}(x)$ to $\vartheta(x) \sim x$. With $\zeta(s)$ the Euler-Riemann zeta function, the dominant term of $\zeta^{\prime}(s) / \zeta(s)$ near $s=1$ is a Dirichlet-like series closely related to $\vartheta(x)$. This fact combines with the convergence theorem in section 4 below to finish the proof.

Contents

1. Weak theta asymptotic 2
2. Lemma on asymptotics, beginning of the proof 2
2.1. Lemma 2
2.2. Beginning of the proof 3
3. Euler-Riemann zeta function 3
3.1. Zeta as a sum 3
3.2. Zeta as a product 4
3.3. Euler's proof 4
3.4. Continuation of zeta and its logarithmic derivative 5
3.5. Non-vanishing of zeta on $\operatorname{Re}(s)=1 \quad 6$
3.6. Improved continuation of the logarithmic derivative 7
3.7. Dominant term of the logarithmic derivative near $s=1 \quad 7$
4. Convergence theorem, corollary on asymptotics, end of the proof 7
4.1. Theorem 7
4.2. Corollary 10
4.3. End of the proof 11

1. Weak theta asymptotic

With $\vartheta(x)=\sum_{p \leq x} \log p$ as above, a quick argument shows that

$$
\vartheta(x)=\mathcal{O}(x)
$$

as follows. For any positive integer n,

$$
\prod_{n<p \leq 2 n} p \leq\binom{ 2 n}{n}<\sum_{j=0}^{2 n}\binom{2 n}{j}=2^{2 n}
$$

and so

$$
\vartheta(2 n)-\vartheta(n)=\sum_{n<p \leq 2 n} \log p=\log \left(\prod_{n<p \leq 2 n} p\right)<2 n \log 2 .
$$

It follows that

$$
\vartheta\left(2^{m}\right)<2^{m+1} \log 2, \quad m \in \mathbb{Z}_{\geq 1}
$$

and now, because any $x>1$ satisfies $2^{m-1}<x \leq 2^{m}$ for some such m,

$$
\vartheta(x)<2^{m+1} \log 2<4 x \log 2
$$

So indeed $\vartheta(x)=\mathcal{O}(x)$.

2. LEMMA ON ASYMPTOTICS, BEGINNING OF THE PROOF

2.1. Lemma. The following lemma is elementary and ubiquitous in asymptotics.

Lemma 2.1. Suppose that a sequence $\left\{c_{n}\right\}$ satisfies

$$
\sum_{n \leq x} c_{n} \log n \sim r x \quad \text { for some } r
$$

Then

$$
\sum_{n \leq x} c_{n} \sim \frac{r x}{\log x}
$$

Proof. Name the two sums in the lemma,

$$
\theta(x)=\sum_{n \leq x} c_{n} \log n \quad \text { and } \quad \varphi(x)=\sum_{n \leq x} c_{n}
$$

Thus $\theta(x) \sim r x$, and we want to show that $\varphi(x) \sim r x / \log x$. Because the step function $\theta(x)$ jumps by $c_{n} \log n$ at each n, and the step function $\varphi(x)$ jumps by c_{n} at each n, we have for $t>1$ in the sense of Stieltjes integration,

$$
\mathrm{d} \varphi(t)=\frac{\mathrm{d} \theta(t)}{\log t}
$$

With "*" denoting a fixed, large enough lower limit of integration, and with a Stieltjes integral and integration by parts,

$$
\begin{equation*}
\varphi(x) \sim \int_{t=*}^{x} \mathrm{~d} \varphi(t)=\int_{t=*}^{x} \frac{\mathrm{~d} \theta(t)}{\log t}=\left.\frac{\theta(t)}{\log t}\right|_{t=*} ^{x}+\int_{t=*}^{x} \frac{\theta(t)}{t \log ^{2} t} \mathrm{~d} t \tag{1}
\end{equation*}
$$

The boundary term is asymptotically $r x / \log x$, as desired for $\varphi(x)$, so what needs to be shown is that the last integral in (1) is $o(x / \log x)$.

Because $\theta(t) / t \sim r$ for large t, estimate the integral of $1 / \log ^{2} t$, first breaking it into two pieces,

$$
\int_{t=*}^{x} \frac{1}{\log ^{2} t} \mathrm{~d} t=\int_{t=*}^{\sqrt{x}} \frac{1}{\log ^{2} t} \mathrm{~d} t+\int_{t=\sqrt{x}}^{x} \frac{1}{\log ^{2} t} \mathrm{~d} t
$$

For the first piece,

$$
\int_{t=*}^{\sqrt{x}} \frac{1}{\log ^{2} t} \mathrm{~d} t \leq \sqrt{x} \int_{t=*}^{\sqrt{x}} \frac{1}{t \log ^{2} t} \mathrm{~d} t=-\left.\sqrt{x} \frac{1}{\log t}\right|_{t=*} ^{\sqrt{x}} \sim \sqrt{x}
$$

while for the second,

$$
\int_{t=\sqrt{x}}^{x} \frac{1}{\log ^{2} t} \mathrm{~d} t \leq \frac{1}{\log ^{2} \sqrt{x}}(x-\sqrt{x}) \sim \frac{2 x}{\log ^{2} x}
$$

Altogether $\int_{t=*}^{x} \mathrm{~d} t / \log ^{2} t$ is $o(x / \log x)$. Because $\theta(t) / t=\mathcal{O}(1)$, the last integral in (1) is therefore $o(x / \log x)$ as well, and the argument is complete.
2.2. Beginning of the proof. Consider the prime-indicator sequence, $\left\{c_{n}\right\}=$ $\left\{c_{1}, c_{2}, \ldots\right\}$ where

$$
c_{n}= \begin{cases}1 & \text { if } n \text { is prime } \\ 0 & \text { otherwise }\end{cases}
$$

The Chebyshev theta function and the prime-counting function function are naturally re-expressed using this sequence,

$$
\vartheta(x)=\sum_{n \leq x} c_{n} \log n \quad \text { and } \quad \pi(x)=\sum_{n \leq x} c_{n}
$$

Consequently the lemma reduces the Prime Number Theorem to showing that

$$
\vartheta(x) \sim x
$$

Already $\vartheta(x)=\mathcal{O}(x)$ is established, so the work is to go from this to the boxed result.

3. Euler-Riemann zeta function

3.1. Zeta as a sum. The Euler-Riemann zeta function is initially defined as a sum on an open right half plane,

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}, \quad \operatorname{Re}(s)>1
$$

This sum converges absolutely on $\operatorname{Re}(s)>1$ because $\left|n^{-s}\right|=n^{-\operatorname{Re}(s)}$, and hence it indeed converges on $\operatorname{Re}(s)>1$. Each truncation $\sum_{n=1}^{N} n^{-s}$ of the sum is entire.

Let K denote a compact subset of $\operatorname{Re}(s)>1$. There exists some $\sigma>1$ such that $\operatorname{Re}(s) \geq \sigma$ on K, and so

$$
\left|\sum_{n=N}^{\infty} n^{-s}\right| \leq \sum_{n=N}^{\infty} n^{-\sigma}, \quad s \in K
$$

This shows that the sum $\zeta(s)$ converges uniformly on K. Altogether, $\zeta(s)$ is holomorphic on $\operatorname{Re}(s)>1$.
3.2. Zeta as a product. The Euler-Riemann zeta function has a second expression as a product of so-called Euler factors over the prime numbers,

$$
\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}, \quad \operatorname{Re}(s)>1
$$

The equality of the product and sum expressions of $\zeta(s)$ for $\operatorname{Re}(s)>1$ is a matter of the geometric series formula and the Fundamental Theorem of Arithmetic, as follows. Consider any positive integer k, let p_{1}, \ldots, p_{k} denote the first k primes, compute

$$
\begin{aligned}
\prod_{i=1}^{k}\left(1-p_{i}^{-s}\right)^{-1} & =\prod_{i=1}^{k} \lim _{M_{i} \rightarrow \infty} \sum_{m_{i}=0}^{M_{i}} p_{i}^{-m_{i} s}=\lim _{M_{1}, \ldots, M_{k} \rightarrow \infty} \prod_{i=1}^{k} \sum_{m_{i}=0}^{M_{i}} p_{i}^{-m_{i} s} \\
& =\lim _{M_{1}, \ldots, M_{k} \rightarrow \infty} \sum_{\substack{n=\prod_{i=1}^{k} p_{i}^{m_{i}} \\
m_{i} \leq M_{i} \text { each } i}} n^{-s}=\sum_{n=\prod_{i=1}^{k} p_{i}^{m_{i}}} n^{-s},
\end{aligned}
$$

and take the limit as k goes to ∞ to get the result, $\prod_{p}\left(1-p^{-s}\right)^{-1}=\sum_{n=1}^{\infty} n^{-s}$. Now the product form of $\zeta(s)$ inherits the holomorphy of the sum form.

Also we can show that the product is a holomorphic function on $\operatorname{Re}(s)>1$ with no reference to its matching the sum. Recall a general result for a product $\prod_{n=1}^{\infty}\left(1+\varphi_{n}(s)\right)$ with each φ_{n} holomorphic on a domain Ω, as follows.

Suppose that:

For every compact K in Ω
there is a summable sequence $\left\{x_{n}\right\}=\left\{x_{n}(K)\right\}$ in $\mathbb{R}_{\geq 0}$ such that
$\left|\varphi_{n}(s)\right| \leq x_{n}$ for all n, uniformly over $s \in K$.
Then $\prod_{n=1}^{\infty}\left(1+\varphi_{n}(s)\right)$ is holomorphic on Ω.
In our case, Ω is $\operatorname{Re}(s)>1$, and $\varphi_{n}(s)$ is $\left(1-p^{-s}\right)^{-1}-1=\left(1-p^{-s}\right)^{-1} p^{-s}$ if n is a prime p, while $\varphi_{n}=0$ if n is composite. Let K be a compact subset of $\operatorname{Re}(s)>1$. There exists some $\sigma>1$ such that $\operatorname{Re}(s) \geq \sigma$ on K. Let $\left\{x_{n}\right\}=\left\{2 n^{-\sigma}\right\}$. For any prime p, for all $s \in K$,

$$
\left|\varphi_{p}(s)\right|=\left|\left(1-p^{-s}\right)^{-1} p^{-s}\right| \leq 2 p^{-\sigma}=x_{p}
$$

and $\left|\varphi_{n}(s)\right|=0 \leq x_{n}$ for composite n and $s \in K$. Thus the product $\prod_{p}\left(1-p^{-s}\right)^{-1}$ is holomorphic on $\operatorname{Re}(s)>1$, as claimed.
3.3. Euler's proof. Using the product form of $\zeta(s)$, consider the logarithm of the zeta function for s approaching 1 from the right,

$$
\begin{equation*}
\log \zeta(s)=\sum_{p} \log \left(\left(1-p^{-s}\right)^{-1}\right)=\sum_{p} \sum_{m \geq 1} \frac{1}{m p^{m s}} \tag{2}
\end{equation*}
$$

This decomposes into two terms,

$$
\log \zeta(s)=\sum_{p} \frac{1}{p^{s}}+\sum_{p} \sum_{m \geq 2} \frac{1}{m p^{m s}}
$$

The sum form of $\zeta(s)$ shows that ζ diverges at 1 , and hence so does $\log \zeta$ although more slowly. The second sum is bounded by 1 ,

$$
\sum_{p} \sum_{m \geq 2} \frac{1}{m p^{m s}}<\sum_{p} \frac{1}{p^{2 s}\left(1-p^{-s}\right)}=\sum_{p} \frac{1}{p^{s}\left(p^{s}-1\right)}<\sum_{k=2}^{\infty} \frac{1}{k(k-1)}=1
$$

So the first sum $\sum_{p} p^{-s}$ is asymptotic to $\log \zeta(s)$ as s goes to 1 , and consequently the prime numbers are dense enough to make the sum diverge at $s=1$. This is a stronger result than the existence of infinitely many primes. For the Prime Number Theorem, we will similarly study $(\log \zeta(s))^{\prime}=\zeta^{\prime}(s) / \zeta(s)$ at $s=1$.
3.4. Continuation of zeta and its logarithmic derivative. The function $\zeta(s)$ continues meromorphically to $\operatorname{Re}(s)>0$, the only singularity of the extension being a simple pole at $s=1$ with residue $\operatorname{res}_{1} \zeta(s)=1$. The argument requires some estimation but isn't deep, as follows. For $\operatorname{Re}(s)>1$, introduce the function

$$
\psi(x)=\zeta(s)-\frac{1}{s-1}=\sum_{n=1}^{\infty} n^{-s}-\int_{1}^{\infty} t^{-s} \mathrm{~d} t=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(n^{-s}-t^{-s}\right) \mathrm{d} t
$$

This last sum is an infinite sum of analytic functions. For positive real s it is the sum of small areas above the $y=t^{-s}$ curve but inside the circumscribing box of the curve over each unit interval, and hence it is bounded absolutely by 1. More generally, for complex s with positive real part we can quantify the smallness of the sum as follows. For all $t \in[n, n+1]$ we have

$$
\left|n^{-s}-t^{-s}\right|=\left|s \int_{n}^{t} x^{-s-1} \mathrm{~d} x\right| \leq|s| \int_{n}^{t} x^{-\operatorname{Re}(s)-1} \mathrm{~d} x \leq|s| n^{-\operatorname{Re}(s)-1}
$$

with the last quantity in the previous display independent of t and having the power of n smaller by 1 . It follows that

$$
\left|\int_{n}^{n+1}\left(n^{-s}-t^{-s}\right) \mathrm{d} t\right| \leq|s| n^{-\operatorname{Re}(s)-1}
$$

This estimate shows that the sum $\psi(s)=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(n^{-s}-t^{-s}\right) \mathrm{d} t$ converges on $\{s: \operatorname{Re}(s)>0\}$, uniformly on compact subsets, making $\psi(s)$ analytic there. Thus, in the relation

$$
\zeta(s)=\psi(s)+\frac{1}{s-1}, \quad \operatorname{Re}(s)>1
$$

the right side is meromorphic on $\operatorname{Re}(s)>0$, its only singularity being a simple pole at $s=1$ with residue 1 . So the previous display extends $\zeta(s)$ to $\operatorname{Re}(s)>0$ and gives it the same properties, as claimed.

The value $\psi(1)=\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)$ is called Euler's constant and denoted γ,

$$
\zeta(s)=\frac{1}{s-1}+\gamma+\mathcal{O}(s-1), \quad \gamma=\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(n^{-1}-t^{-1}\right) \mathrm{d} t
$$

With H_{N} denoting the N th harmonic number $\sum_{n=1}^{N} n^{-1}$, Euler's constant is

$$
\gamma=\lim _{N \rightarrow \infty}\left(H_{N}-\log N\right)
$$

As above, this is the area above the $y=1 / x$ curve for $x \geq 1$ but inside the circumscribing boxes $[n, n+1] \times[0,1 / n]$ for $n \geq 1$.

The continuation argument just given should be viewed as a place-holder, because Riemann's deeper argument continues $\zeta(s)$ meromorphically to all of the complex plane and establishes a functional equation for the continuation.

With $\zeta(s)$ continued, its logarithmic derivative $\zeta^{\prime}(s) / \zeta(s)$ also continues meromorphically to $\operatorname{Re}(s)>0$, again having a simple pole at $s=1$, this time with residue $\operatorname{res}_{1}\left(\zeta^{\prime}(s) / \zeta(s)\right)=\operatorname{ord}_{1} \zeta(s)=-1$. Indeed, recall more generally that if a function f is meromorphic about c and not identically 0 then f^{\prime} / f is again meromorphic about c with at most a simple pole at c, and

$$
\operatorname{res}_{c}\left(f^{\prime} / f\right)=\operatorname{ord}_{c} f
$$

The argument is that because $f(z)=(z-c)^{m} g(z)$ about c, with $m=\operatorname{ord}_{c} f$ and g nonzero at c,

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m}{z-c}+\frac{g^{\prime}(z)}{g(z)}, \quad \frac{g^{\prime}}{g} \text { holomorphic about } c
$$

and so $\operatorname{res}_{c}\left(f^{\prime} / f\right)=m$ as desired.
3.5. Non-vanishing of zeta on $\operatorname{Re}(s)=1$. To help prove the next proposition, and for further use in section 3.7, compute that for $\operatorname{Re}(s)>1$ the logarithmic derivative of $\zeta(s)$ is, from (2),

$$
\begin{equation*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}=(\log \zeta(s))^{\prime}=-\sum_{p} \sum_{m \geq 1} \frac{\log p}{p^{m s}} . \tag{3}
\end{equation*}
$$

(The coefficient function of the Dirichlet series in the previous display is the von Mangoldt function, $\Lambda\left(p^{m}\right)=\log p$ and $\Lambda(n)=0$ if n is not a prime power.)
Proposition 3.1. $\zeta(s) \neq 0$ for $\operatorname{Re}(s)=1$.
Proof. Fix any nonzero real t. Define

$$
D(s)=\zeta(s)^{3} \zeta(s+i t)^{4} \zeta(s+2 i t)
$$

From the logarithmic derivative computation just above,

$$
\frac{D^{\prime}(s)}{D(s)}=-\sum_{p} \sum_{m \geq 1} \frac{\log p\left(3+4 p^{-m i t}+p^{-2 m i t}\right)}{p^{m s}}
$$

We show that $0 \geq \operatorname{ord}_{1} D(s)$, i.e., $D(s)$ is nonzero at 1 . The order of vanishing is

$$
\operatorname{ord}_{1} D(s)=\operatorname{res}_{1}\left(D^{\prime}(s) / D(s)\right)=\lim _{s \rightarrow 1^{+}}(s-1) D^{\prime}(s) / D(s)
$$

with s approaching 1 from the right on the real axis. Because this quantity is an integer it is real, and so it is the limit of $s-1$ times the real part of $D^{\prime}(s) / D(s)$,

$$
\operatorname{ord}_{1} D(s)=-\lim _{s \rightarrow 1^{+}}(s-1) \sum_{p} \sum_{m \geq 1} \frac{(3+4 \cos (m t \log p)+\cos (2 m t \log p)) \log p}{p^{m s}} .
$$

But for any real θ,

$$
3+4 \cos \theta+\cos 2 \theta=3+4 \cos \theta+2 \cos ^{2} \theta-1=2(1+\cos \theta)^{2} \geq 0
$$

and so the limit is nonpositive, i.e., $0 \geq \operatorname{ord}_{1} D(s)$ as claimed. The result follows because $\operatorname{ord}_{1} D(s) \geq-3+4 \operatorname{ord}_{1} \zeta(s+i t)$, precluding the integer ord ${ }_{1} \zeta(s+i t)$ from being positive. That is, $\zeta(1+i t) \neq 0$.
3.6. Improved continuation of the logarithmic derivative. In consequence of $\zeta^{\prime}(s) / \zeta(s)$ extending meromorphically from $\operatorname{Re}(s)>1$ to $\operatorname{Re}(s)>0$ with a simple pole at $s=1$, and of $\zeta(s)$ never vanishing on $\operatorname{Re}(s)=1$, also $(s-1) \zeta^{\prime}(s) / \zeta(s)$ extends holomorphically from $\operatorname{Re}(s)>1$ to $\operatorname{Re}(s) \geq 1$. Being holomorphic on $\operatorname{Re}(s) \geq 1$ and meromorphic on $\operatorname{Re}(s)>0,(s-1) \zeta^{\prime}(s) / \zeta(s)$ is in fact holomorphic on an open superset of $\operatorname{Re}(s) \geq 1$.
3.7. Dominant term of the logarithmic derivative near $s=1$. $\operatorname{For} \operatorname{Re}(s)>1$, decompose the logarithmic derivative of $\zeta(s)$ in (3) into two terms, as in Euler's proof,

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\sum_{p} \frac{\log p}{p^{s}}-\sum_{p} \sum_{m \geq 2} \frac{\log p}{p^{m s}}, \quad \operatorname{Re}(s)>1
$$

The second sum defines a holomorphic function on $\operatorname{Re}(s)>1 / 2$ because its partial sums are entire and it converges uniformly on compacta therein. Indeed, $\left|p^{m s}\right|=$ $p^{m \sigma}$ where $\sigma=\operatorname{Re}(s)$, and given $\sigma>1 / 2$ there exists p_{o} such that $\log p<p^{\sigma-1 / 2}$ for all $p \geq p_{o}$; so, with $c=1 /\left(1-2^{-1 / 2}\right)=2+\sqrt{2}$,

$$
\sum_{\substack{p \geq p_{o} \\ m \geq 2}} \frac{\log p}{p^{m \sigma}}=\sum_{p \geq p_{o}} \frac{\log p}{\left(1-p^{-\sigma}\right) p^{2 \sigma}}<c \sum_{p \geq p_{o}} \frac{p^{\sigma-1 / 2}}{p^{2 \sigma}}=c \sum_{p \geq p_{o}} \frac{1}{p^{\sigma+1 / 2}}
$$

This suffices to prove the uniform convergence.
The dominant term $-\sum_{p} \log p / p^{s}$ of $\zeta^{\prime}(s) / \zeta(s)$ near $s=1$ now takes the form $-D(s)$, where D is the Dirichlet-like series

$$
D(s)=\sum_{n=1}^{\infty} \frac{c_{n} \log n}{n^{s}}, \quad c_{n}= \begin{cases}1 & \text { if } n \text { is prime } \\ 0 & \text { otherwise }\end{cases}
$$

Crucially, $\left\{c_{n}\right\}$ is the prime-indicator sequence that arose from the Chebyshev theta function and the prime-counting function in section 2.2. This series is holomorphic on the open right half plane $\operatorname{Re}(s)>1$, and $(s-1) D(s)$ extends holomorphically to an open superset of the closed right half plane $\operatorname{Re}(s) \geq 1$, and $D(s)$ extends holomorphically to this set except for a simple pole at $s=1$ with residue $\rho=1$. Also, the condition $\vartheta(x)=\mathcal{O}(x)$ is already established. These will be precisely the hypotheses for the last result of this writeup, Corollary 4.2 below, whose conclusion is then that $\vartheta(x) \sim \rho x=x$, completing the proof of the Prime Number Theorem.
4. Convergence theorem, corollary on asymptotics, end of the proof

4.1. Theorem.

Theorem 4.1. Consider a holomorphic function f on the open right half plane $\operatorname{Re}(s)>0$, as follows: α is a bounded locally integrable function on $\mathbb{R}_{\geq 1}$, and f is the integral

$$
f(s)=\int_{t=1}^{\infty} \frac{\alpha(t)}{t^{s+1}} \mathrm{~d} t
$$

Suppose that f extends to a holomorphic function on an open superset of the closed right half plane $\operatorname{Re}(s) \geq 0$. Then the integral that defines $f(s)$ for $\operatorname{Re}(s)>0$ converges on the closed right half plane $\operatorname{Re}(s) \geq 0$.

The theorem also holds if instead $\left\{a_{n}\right\}$ is a bounded sequence of complex numbers and $f(s)$ is a Dirichlet series

$$
f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s+1}}
$$

by the same proof to follow.

Proof. It suffices to show that the integral converges at $s=0$. Indeed, for any real y, the function $\tilde{f}(s)=f(s+i y)$ satisfies the same conditions as f, now with $\tilde{\alpha}(t)=$ $\alpha(t) e^{-i y t}$ (or $\left\{\tilde{a}_{n}\right\}=\left\{a_{n} / n^{i y}\right\}$ in the Dirichlet series case), and the convergence at 0 of the integral that initially defines \tilde{f} is precisely the convergence at $i y$ of the integral that initially defines f.

For any $R \geq 1$ there exists $\delta=\delta_{R}>0$ such that f is holomorphic on the compact region determined by the conditions $|s| \leq R$ and $\operatorname{Re}(s) \geq-\delta$, a truncated disk if $\delta<R$. Consider the counterclockwise boundary of this region, consisting of an arc determined by the conditions $|s|=R$ and $\operatorname{Re}(s) \geq-\delta$, and possibly a vertical segment determined by the conditions $|s| \leq R$ and $\operatorname{Re}(s)=-\delta$. Typically the arc will be less than a full circle and the vertical segment will be present. Let A and B respectively denote the portions of the boundary in the right and left half planes, so that the boundary is $A \cup B$ with A a right semicircle.

Let N be any positive integer. Because $f(0)=f(0) N^{0}$, Cauchy's integral representation and Cauchy's theorem give

$$
\begin{equation*}
2 \pi i f(0)=\int_{A \cup B} f(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s \tag{4}
\end{equation*}
$$

Consider the N th truncation of the integral for $f(s)$ on $\operatorname{Re}(s)>0$,

$$
f_{N}(s)=\int_{t=0}^{N} \alpha(t) e^{-s t} \mathrm{~d} t
$$

This is an entire function of s, and so we may express its value at 0 by integrating over the circle $A \cup-A$ rather than the truncated circle $A \cup B$,

$$
2 \pi i f_{N}(0)=\int_{A \cup-A} f_{N}(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s
$$

Further,

$$
\int_{-A} f_{N}(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s=\int_{A} f_{N}(-s) N^{-s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s
$$

and so in fact

$$
\begin{equation*}
2 \pi i f_{N}(0)=\int_{A} f_{N}(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s+\int_{A} f_{N}(-s) N^{-s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s \tag{5}
\end{equation*}
$$

Let $r_{N}=f-f_{N}$ denote the N th remainder, a holomorphic function on an open superset of the closed right half plane $\operatorname{Re}(s) \geq 0$, represented by a tail integral on the open right half plane $\operatorname{Re}(s)>0$. Proving the theorem amounts to showing that $\lim _{N} r_{N}(0)=0$. Because $r_{N}=f-f_{N}$, the calculated expressions (4) and (5) for
$2 \pi i f(0)$ and $2 \pi i f_{N}(0)$ give

$$
\begin{aligned}
2 \pi i r_{N}(0)= & \int_{A} f(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s+\int_{B} f(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s \\
& -\int_{A} f_{N}(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s-\int_{A} f_{N}(-s) N^{-s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s
\end{aligned}
$$

which rearranges to give $2 \pi i r_{N}(0)$ as a sum of three terms,

$$
\begin{align*}
2 \pi i r_{N}(0)= & \int_{A}\left(r_{N}(s) N^{s}-f_{N}(-s) N^{-s}\right)\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s \\
& +\int_{B \cap\{|s|=R\}} f(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s \tag{6}\\
& +\int_{B \cap\{\operatorname{Re}(s)=-\delta\}} f(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s
\end{align*}
$$

Next compute some estimates. Let b be a bound of the function α, so that b depends only on f. Let σ denote the real part of s.

- For $\operatorname{Re}(s)>0$, with b as just above,

$$
\left|r_{N}(s)\right| \leq \frac{b}{\sigma N^{\sigma}}
$$

Indeed, $\left|r_{N}(s)\right|=\left|\int_{t=N}^{\infty} \alpha(t) t^{-s-1} \mathrm{~d} t\right| \leq b \int_{t=N}^{\infty} t^{-\sigma-1} \mathrm{~d} t=b /\left(\sigma N^{\sigma}\right)$. (In the Dirichlet series case, with $r_{N}(s)=\sum_{n=N}^{\infty} a_{n} n^{-s-1}$, the upper bound is $b\left(1 / N^{\sigma+1}+1 /\left(\sigma N^{\sigma}\right).\right)$

- For $\operatorname{Re}(s)>0$, with b as above,

$$
\left|f_{N}(-s)\right| \leq \frac{b N^{\sigma}}{\sigma}
$$

Indeed, $\left|f_{N}(-s)\right|=\left|\int_{t=1}^{N} \alpha(t) t^{s-1} \mathrm{~d} t\right| \leq b \int_{t=1}^{N} t^{\sigma-1} \mathrm{~d} t=b\left(N^{\sigma}-1\right) / \sigma$.

- For $|s|=R$,

$$
\frac{1}{s}+\frac{s}{R^{2}}=\frac{2 \sigma}{R^{2}}
$$

Indeed, $s=R e^{i \theta}$, and so $s^{-1}+s R^{-2}=\left(e^{i \theta}+e^{-i \theta}\right) R^{-1}=2 R \cos \theta \cdot R^{-2}$.

- For s on the vertical segment portion of B, because $\sigma=-\delta$ and $|s| \leq R$,

$$
\left|\frac{1}{s}+\frac{s}{R^{2}}\right| \leq \frac{1}{\delta}+\frac{1}{R}=\frac{R+\delta}{R \delta}
$$

From the first three estimates and from A having length πR, the first term of $2 \pi i r_{N}(0)$ in (6) satisfies

$$
\left|\int_{A}\left(r_{N}(s) N^{s}-f_{N}(-s) N^{-s}\right)\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s\right| \leq \frac{4 \pi b}{R}
$$

Let $\varepsilon>0$ be given. If $R>4 \pi b / \varepsilon$ then $4 \pi b / R<\varepsilon$.
For the given $\varepsilon>0$, and with $R>4 \pi b / \varepsilon$ fixed, take a compatible $\delta=\delta_{R}>0$, freely stipulating that $\delta<1$, such that f is holomorphic on and inside $A \cup B$. Let M bound f on this compact region. The second term of $2 \pi i r_{N}(0)$ in (6) satisfies, again using the first three estimates, the conditions on δ, and a little geometry,

$$
\left|\int_{B \cap\{|s|=R\}} f(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s\right| \leq \frac{8 M}{R^{2}} \int_{\sigma=-\delta}^{0} N^{\sigma} \mathrm{d} \sigma<\frac{8 M}{R^{2} \log N}
$$

If $N>\exp \left(8 M /\left(R^{2} \varepsilon\right)\right)$ then $8 M /\left(R^{2} \log N\right)<\varepsilon$.
Still with ε and R and δ, the fourth estimate and the fact that $B \cap\{\operatorname{Re}(s)=-\delta\}$ has length at most $2 R$ show that the third term of $2 \pi i r_{N}(0)$ in (6) satisfies

$$
\left|\int_{B \cap\{\operatorname{Re}(s)=-\delta\}} f(s) N^{s}\left(\frac{1}{s}+\frac{s}{R^{2}}\right) \mathrm{d} s\right| \leq \frac{2 M(R+\delta)}{\delta N^{\delta}}
$$

If $N>(2 M(R+\delta) /(\delta \varepsilon))^{1 / \delta}$ then $2 M(R+\delta) /\left(\delta N^{\delta}\right)<\varepsilon$.
Altogether, given $\varepsilon>0$, take $R>4 \pi b / \varepsilon$ and suitable $\delta=\delta_{R}<1$, and then $\left|2 \pi i r_{N}(0)\right|<3 \varepsilon$ for all large enough N. Thus $\left\{r_{N}(0)\right\}$ converges to 0 , which is to say that the integral that defines $f(s)$ for $\operatorname{Re}(s)>0$ converges at $s=0$ to $f(0)$.
4.2. Corollary. The next result follows from the previous theorem.

Corollary 4.2. Let $\left\{c_{n}\right\}$ be a sequence of nonnegative real numbers such that the sum

$$
D(s)=\sum_{n=1}^{\infty} \frac{c_{n} \log n}{n^{s}}
$$

is holomorphic on the open right half plane $\operatorname{Re}(s)>1$. Suppose that $(s-1) D(s)$ extends holomorphically to an open superset of the closed right half plane $\operatorname{Re}(s) \geq 1$, so that $D(s)$ extends holomorphically to this set except possibly for a simple pole at $s=1$. Let

$$
\rho=\operatorname{res}_{1} D(s)
$$

Suppose that the function

$$
S(x)=\sum_{n \leq x} c_{n} \log n \quad \text { for real } x \geq 1
$$

satisfies

$$
S(x)=\mathcal{O}(x)
$$

Then

$$
S(x) \sim \rho x
$$

Proof. For $\operatorname{Re}(s)>1$, write $D(s)$ as a Stieltjes integral, integrate by parts with the boundary terms $S(t) /\left.t^{s}\right|_{1} ^{\infty}$ vanishing,

$$
D(s)=\int_{1}^{\infty} \frac{\mathrm{d} S(t)}{t^{s}}=s \int_{1}^{\infty} \frac{S(t)}{t^{s+1}} \mathrm{~d} t
$$

Consequently for $\operatorname{Re}(s)>0$, recalling the quantity $\rho=\operatorname{res}_{1} D(s)$,

$$
\int_{t=1}^{\infty} \frac{S(t) / t-\rho}{t^{s+1}} \mathrm{~d} t=\frac{D(s+1)}{s+1}-\frac{\rho}{s}
$$

Because $D(s+1) /(s+1) \sim \rho /(s(s+1))=\rho / s-\rho /(s+1)$ for s near 0 , the right side extends holomorphically to an open superset of the closed right half plane $\operatorname{Re}(s) \geq 0$, and hence so does the left side. Further, the function $S(t) / t-\rho$ is bounded and locally integrable on $\mathbb{R}_{\geq 1}$, so it meets the conditions on the α in the convergence theorem. The theorem says that the integral on the left side converges for $\operatorname{Re}(s) \geq 0$, and in particular for $s=0$. That is,

$$
\int_{t=1}^{\infty} \frac{S(t)-\rho t}{t^{2}} \mathrm{~d} t \quad \text { converges. }
$$

This convergence and the fact that $S(x)$ is nonnegative and increasing show that $S(x) \sim \rho x$, meaning that $\lim _{x \rightarrow \infty} S(x) / x=\rho$, as follows. Let $\varepsilon>0$ be given. Suppose that $S(x) \geq(1+\varepsilon) \rho x$ for a sequence of x-values going to ∞. Estimate that for such x,

$$
\int_{t=x}^{(1+\varepsilon) x} \frac{S(t)-\rho t}{t^{2}} \mathrm{~d} t \geq \int_{t=x}^{(1+\varepsilon) x} \frac{(1+\varepsilon) \rho x-\rho t}{t^{2}} \mathrm{~d} t=\rho \int_{t=1}^{1+\varepsilon} \frac{1+\varepsilon-t}{t^{2}} \mathrm{~d} t
$$

the last quantity positive and independent of x. This contradicts the convergence of the integral. Similarly, now freely taking $\varepsilon<1$, if $S(x) \leq(1-\varepsilon) \rho x$ for a sequence of x-values going to ∞ then for such x,

$$
\int_{t=(1-\varepsilon) x}^{x} \frac{S(t)-\rho t}{t^{2}} \mathrm{~d} t \leq \rho \int_{t=1-\varepsilon}^{1} \frac{1-\varepsilon-t}{t^{2}} \mathrm{~d} t
$$

negative and independent of x, again violating convergence.
4.3. End of the proof. As noted at the end of section 3.7, the case where $c_{n}=1$ if n is prime and $c_{n}=0$ otherwise completes the proof of the Prime Number Theorem. In this case, $D(s)$ is (minus) the dominant term of the logarithmic derivative $\zeta^{\prime}(s) / \zeta(s)$, with residue $\rho=1$ at $s=1$, and $S(x)$ is the Chebyshev theta function $\vartheta(x)$, known to be $\mathcal{O}(x)$. The asymptotic result $\vartheta(x) \sim x$ from Corollary 4.2 is exactly what is needed to finish the Prime Number Theorem argument.

