SIMPLE PROOF OF THE PRIME NUMBER THEOREM

This writeup is drawn from a writeup by Paul Garrett for his complex analysis course,

http://www-users.math.umn.edu/~garrett/m/complex/notes_2014-15/
09_prime_number_theorem.pdf

Especially, the bibliography of the source writeup contains relevant papers of Chebyshev, Erdős, Garrett, Hadamard, Newman, de la Vallée Poussin, Riemann, Selberg, and Wiener.

The prime-counting function, a function of a real variable, is

$$\pi(x) = |\{p : p \le x\}|$$

That is, $\pi(x)$ equals the number of prime numbers that are at most x. The **Prime** Number Theorem states that

$$\pi(x) \sim \frac{x}{\log(x)}$$

meaning that $\lim_{x\to\infty} \pi(x)/(x/\log(x)) = 1$.

The Chebyshev theta function, also a function of a real variable, is

$$\vartheta(x) = \sum_{p \le x} \log p.$$

A quick argument shows that $\vartheta(x) = \mathcal{O}(x)$, meaning that $\vartheta(x) \leq cx$ for some cand all large x; in fact, the argument produces such a c and the inequality holds for all x. A basic lemma of asymptotics specializes to show that if $\vartheta(x) \sim x$, meaning that $\lim_{x\to\infty} \vartheta(x)/x = 1$, then $\pi(x) \sim x/\log x$, giving the Prime Number Theorem. Thus the main work of this writeup is to go from $\vartheta(x) = \mathcal{O}(x)$ to $\vartheta(x) \sim x$. With $\zeta(s)$ the Euler–Riemann zeta function, the dominant term of $\zeta'(s)/\zeta(s)$ near s = 1 is a Dirichlet-like series closely related to $\vartheta(x)$. This fact combines with the convergence theorem in section 4 below to finish the proof.

CONTENTS

	0
1. Weak theta asymptotic	2
2. Lemma on asymptotics, beginning of the proof	2
2.1. Lemma	2
2.2. Beginning of the proof	3
3. Euler–Riemann zeta function	3
3.1. Zeta as a sum	3
3.2. Zeta as a product	4
3.3. Euler's proof	4
3.4. Continuation of zeta and its logarithmic derivative	5
3.5. Non-vanishing of zeta on $\operatorname{Re}(s) = 1$	6
3.6. Improved continuation of the logarithmic derivative	7
3.7. Dominant term of the logarithmic derivative near $s = 1$	7

4. Convergence theorem, corollary on asymptotics, end of the proof	7
4.1. Theorem	7
4.2. Corollary	10
4.3. End of the proof	11

1. Weak theta asymptotic

With $\vartheta(x) = \sum_{p \leq x} \log p$ as above, a quick argument shows that

$$\vartheta(x) = \mathcal{O}(x)$$

as follows. For any positive integer n,

$$\prod_{n$$

and so

$$\vartheta(2n) - \vartheta(n) = \sum_{n$$

It follows that

$$\vartheta(2^m) < 2^{m+1}\log 2, \quad m \in \mathbb{Z}_{\ge 1},$$

and now, because any x > 1 satisfies $2^{m-1} < x \le 2^m$ for some such m,

 $\vartheta(x) < 2^{m+1}\log 2 < 4x\log 2.$

So indeed $\vartheta(x) = \mathcal{O}(x)$.

2. Lemma on asymptotics, beginning of the proof

2.1. Lemma. The following lemma is elementary and ubiquitous in asymptotics.

Lemma 2.1. Suppose that a sequence $\{c_n\}$ satisfies

$$\sum_{n \le x} c_n \log n \sim rx \quad for \ some \ r.$$

Then

$$\sum_{n \le x} c_n \sim \frac{rx}{\log x} \,.$$

Proof. Name the two sums in the lemma,

$$\theta(x) = \sum_{n \le x} c_n \log n$$
 and $\varphi(x) = \sum_{n \le x} c_n$.

Thus $\theta(x) \sim rx$, and we want to show that $\varphi(x) \sim rx/\log x$. Because the step function $\theta(x)$ jumps by $c_n \log n$ at each n, and the step function $\varphi(x)$ jumps by c_n at each n, we have for t > 1 in the sense of Stieltjes integration,

$$\mathrm{d}\varphi(t) = \frac{\mathrm{d}\theta(t)}{\log t} \,.$$

With "*" denoting a fixed, large enough lower limit of integration, and with a Stieltjes integral and integration by parts,

(1)
$$\varphi(x) \sim \int_{t=*}^{x} \mathrm{d}\varphi(t) = \int_{t=*}^{x} \frac{\mathrm{d}\theta(t)}{\log t} = \frac{\theta(t)}{\log t} \Big|_{t=*}^{x} + \int_{t=*}^{x} \frac{\theta(t)}{t \log^{2} t} \,\mathrm{d}t.$$

The boundary term is asymptotically $rx/\log x$, as desired for $\varphi(x)$, so what needs to be shown is that the last integral in (1) is $o(x/\log x)$.

Because $\theta(t)/t \sim r$ for large t, estimate the integral of $1/\log^2 t$, first breaking it into two pieces,

$$\int_{t=*}^{x} \frac{1}{\log^2 t} \, \mathrm{d}t = \int_{t=*}^{\sqrt{x}} \frac{1}{\log^2 t} \, \mathrm{d}t + \int_{t=\sqrt{x}}^{x} \frac{1}{\log^2 t} \, \mathrm{d}t.$$

For the first piece,

$$\int_{t=*}^{\sqrt{x}} \frac{1}{\log^2 t} \, \mathrm{d}t \le \sqrt{x} \int_{t=*}^{\sqrt{x}} \frac{1}{t \log^2 t} \, \mathrm{d}t = -\sqrt{x} \frac{1}{\log t} \Big|_{t=*}^{\sqrt{x}} \sim \sqrt{x},$$

while for the second,

$$\int_{t=\sqrt{x}}^{x} \frac{1}{\log^2 t} \, \mathrm{d}t \le \frac{1}{\log^2 \sqrt{x}} (x - \sqrt{x}) \sim \frac{2x}{\log^2 x} \, .$$

Altogether $\int_{t=*}^{x} dt/\log^2 t$ is $o(x/\log x)$. Because $\theta(t)/t = \mathcal{O}(1)$, the last integral in (1) is therefore $o(x/\log x)$ as well, and the argument is complete.

2.2. Beginning of the proof. Consider the prime-indicator sequence, $\{c_n\} = \{c_1, c_2, \dots\}$ where

$$c_n = \begin{cases} 1 & \text{if } n \text{ is prime} \\ 0 & \text{otherwise.} \end{cases}$$

The Chebyshev theta function and the prime-counting function function are naturally re-expressed using this sequence,

$$\vartheta(x) = \sum_{n \le x} c_n \log n$$
 and $\pi(x) = \sum_{n \le x} c_n$.

Consequently the lemma reduces the Prime Number Theorem to showing that

$$\vartheta(x) \sim x$$

Already $\vartheta(x) = \mathcal{O}(x)$ is established, so the work is to go from this to the boxed result.

3. Euler-Riemann zeta function

3.1. **Zeta as a sum.** The Euler–Riemann zeta function is initially defined as a sum on an open right half plane,

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \quad \operatorname{Re}(s) > 1.$$

This sum converges absolutely on $\operatorname{Re}(s) > 1$ because $|n^{-s}| = n^{-\operatorname{Re}(s)}$, and hence it indeed converges on $\operatorname{Re}(s) > 1$. Each truncation $\sum_{n=1}^{N} n^{-s}$ of the sum is entire. Let K denote a compact subset of $\operatorname{Re}(s) > 1$. There exists some $\sigma > 1$ such that $\operatorname{Re}(s) \geq \sigma$ on K, and so

$$\left|\sum_{n=N}^{\infty} n^{-s}\right| \le \sum_{n=N}^{\infty} n^{-\sigma}, \quad s \in K.$$

This shows that the sum $\zeta(s)$ converges uniformly on K. Altogether, $\zeta(s)$ is holomorphic on $\operatorname{Re}(s) > 1$.

3.2. **Zeta as a product.** The Euler–Riemann zeta function has a second expression as a product of so-called Euler factors over the prime numbers,

$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}, \quad \operatorname{Re}(s) > 1.$$

The equality of the product and sum expressions of $\zeta(s)$ for $\operatorname{Re}(s) > 1$ is a matter of the geometric series formula and the Fundamental Theorem of Arithmetic, as follows. Consider any positive integer k, let p_1, \ldots, p_k denote the first k primes, compute

$$\begin{split} \prod_{i=1}^{k} (1-p_i^{-s})^{-1} &= \prod_{i=1}^{k} \lim_{M_i \to \infty} \sum_{m_i=0}^{M_i} p_i^{-m_i s} = \lim_{M_1, \dots, M_k \to \infty} \prod_{i=1}^{k} \sum_{m_i=0}^{M_i} p_i^{-m_i s} \\ &= \lim_{M_1, \dots, M_k \to \infty} \sum_{\substack{n = \prod_{i=1}^{k} p_i^{m_i} \\ m_i \leq M_i \text{ each } i}} n^{-s} = \sum_{n = \prod_{i=1}^{k} p_i^{m_i}} n^{-s}, \end{split}$$

and take the limit as k goes to ∞ to get the result, $\prod_p (1-p^{-s})^{-1} = \sum_{n=1}^{\infty} n^{-s}$. Now the product form of $\zeta(s)$ inherits the holomorphy of the sum form.

Also we can show that the product is a holomorphic function on $\operatorname{Re}(s) > 1$ with no reference to its matching the sum. Recall a general result for a product $\prod_{n=1}^{\infty} (1 + \varphi_n(s))$ with each φ_n holomorphic on a domain Ω , as follows.

Suppose that: For every compact K in Ω there is a summable sequence $\{x_n\} = \{x_n(K)\}$ in $\mathbb{R}_{\geq 0}$ such that $|\varphi_n(s)| \leq x_n$ for all n, uniformly over $s \in K$. Then $\prod_{n=1}^{\infty} (1 + \varphi_n(s))$ is holomorphic on Ω .

In our case, Ω is $\operatorname{Re}(s) > 1$, and $\varphi_n(s)$ is $(1 - p^{-s})^{-1} - 1 = (1 - p^{-s})^{-1}p^{-s}$ if n is a prime p, while $\varphi_n = 0$ if n is composite. Let K be a compact subset of $\operatorname{Re}(s) > 1$. There exists some $\sigma > 1$ such that $\operatorname{Re}(s) \ge \sigma$ on K. Let $\{x_n\} = \{2n^{-\sigma}\}$. For any prime p, for all $s \in K$,

$$|\varphi_p(s)| = |(1 - p^{-s})^{-1}p^{-s}| \le 2p^{-\sigma} = x_p,$$

and $|\varphi_n(s)| = 0 \le x_n$ for composite *n* and $s \in K$. Thus the product $\prod_p (1-p^{-s})^{-1}$ is holomorphic on $\operatorname{Re}(s) > 1$, as claimed.

3.3. Euler's proof. Using the product form of $\zeta(s)$, consider the logarithm of the zeta function for s approaching 1 from the right,

(2)
$$\log \zeta(s) = \sum_{p} \log((1-p^{-s})^{-1}) = \sum_{p} \sum_{m \ge 1} \frac{1}{mp^{ms}}.$$

This decomposes into two terms,

$$\log \zeta(s) = \sum_{p} \frac{1}{p^s} + \sum_{p} \sum_{m \ge 2} \frac{1}{mp^{ms}}.$$

The sum form of $\zeta(s)$ shows that ζ diverges at 1, and hence so does log ζ although more slowly. The second sum is bounded by 1,

$$\sum_{p} \sum_{m \ge 2} \frac{1}{mp^{ms}} < \sum_{p} \frac{1}{p^{2s}(1-p^{-s})} = \sum_{p} \frac{1}{p^{s}(p^{s}-1)} < \sum_{k=2}^{\infty} \frac{1}{k(k-1)} = 1.$$

So the first sum $\sum_{p} p^{-s}$ is asymptotic to $\log \zeta(s)$ as s goes to 1, and consequently the prime numbers are dense enough to make the sum diverge at s = 1. This is a stronger result than the existence of infinitely many primes. For the Prime Number Theorem, we will similarly study $(\log \zeta(s))' = \zeta'(s)/\zeta(s)$ at s = 1.

3.4. Continuation of zeta and its logarithmic derivative. The function $\zeta(s)$ continues meromorphically to $\operatorname{Re}(s) > 0$, the only singularity of the extension being a simple pole at s = 1 with residue $\operatorname{res}_1 \zeta(s) = 1$. The argument requires some estimation but isn't deep, as follows. For $\operatorname{Re}(s) > 1$, introduce the function

$$\psi(x) = \zeta(s) - \frac{1}{s-1} = \sum_{n=1}^{\infty} n^{-s} - \int_{1}^{\infty} t^{-s} \, \mathrm{d}t = \sum_{n=1}^{\infty} \int_{n}^{n+1} (n^{-s} - t^{-s}) \, \mathrm{d}t.$$

This last sum is an infinite sum of analytic functions. For positive real s it is the sum of small areas above the $y = t^{-s}$ curve but inside the circumscribing box of the curve over each unit interval, and hence it is bounded absolutely by 1. More generally, for complex s with positive real part we can quantify the smallness of the sum as follows. For all $t \in [n, n + 1]$ we have

$$|n^{-s} - t^{-s}| = |s \int_{n}^{t} x^{-s-1} \, \mathrm{d}x| \le |s| \int_{n}^{t} x^{-\operatorname{Re}(s)-1} \, \mathrm{d}x \le |s| n^{-\operatorname{Re}(s)-1},$$

with the last quantity in the previous display independent of t and having the power of n smaller by 1. It follows that

$$\left| \int_{n}^{n+1} (n^{-s} - t^{-s}) \, \mathrm{d}t \right| \le |s| n^{-\operatorname{Re}(s) - 1}.$$

This estimate shows that the sum $\psi(s) = \sum_{n=1}^{\infty} \int_{n}^{n+1} (n^{-s} - t^{-s}) dt$ converges on $\{s : \operatorname{Re}(s) > 0\}$, uniformly on compact subsets, making $\psi(s)$ analytic there. Thus, in the relation

$$\zeta(s) = \psi(s) + \frac{1}{s-1}, \quad \text{Re}(s) > 1,$$

the right side is meromorphic on $\operatorname{Re}(s) > 0$, its only singularity being a simple pole at s = 1 with residue 1. So the previous display extends $\zeta(s)$ to $\operatorname{Re}(s) > 0$ and gives it the same properties, as claimed.

The value $\psi(1) = \lim_{s \to 1} (\zeta(s) - \frac{1}{s-1})$ is called *Euler's constant* and denoted γ ,

$$\zeta(s) = \frac{1}{s-1} + \gamma + \mathcal{O}(s-1), \qquad \gamma = \sum_{n=1}^{\infty} \int_{n}^{n+1} (n^{-1} - t^{-1}) \,\mathrm{d}t.$$

With H_N denoting the Nth harmonic number $\sum_{n=1}^{N} n^{-1}$, Euler's constant is $\gamma = \lim_{N \to \infty} (H_N - \log N).$

As above, this is the area above the y = 1/x curve for $x \ge 1$ but inside the circumscribing boxes $[n, n+1] \times [0, 1/n]$ for $n \ge 1$.

The continuation argument just given should be viewed as a place-holder, because Riemann's deeper argument continues $\zeta(s)$ meromorphically to all of the complex plane and establishes a functional equation for the continuation.

With $\zeta(s)$ continued, its logarithmic derivative $\zeta'(s)/\zeta(s)$ also continues meromorphically to $\operatorname{Re}(s) > 0$, again having a simple pole at s = 1, this time with residue $\operatorname{res}_1(\zeta'(s)/\zeta(s)) = \operatorname{ord}_1\zeta(s) = -1$. Indeed, recall more generally that if a function f is meromorphic about c and not identically 0 then f'/f is again meromorphic about c with at most a simple pole at c, and

$$\operatorname{res}_c(f'/f) = \operatorname{ord}_c f.$$

The argument is that because $f(z) = (z - c)^m g(z)$ about c, with $m = \operatorname{ord}_c f$ and g nonzero at c,

$$\frac{f'(z)}{f(z)} = \frac{m}{z-c} + \frac{g'(z)}{g(z)}, \qquad \frac{g'}{g} \text{ holomorphic about } c,$$

and so $\operatorname{res}_c(f'/f) = m$ as desired.

3.5. Non-vanishing of zeta on $\operatorname{Re}(s) = 1$. To help prove the next proposition, and for further use in section 3.7, compute that for $\operatorname{Re}(s) > 1$ the logarithmic derivative of $\zeta(s)$ is, from (2),

(3)
$$\frac{\zeta'(s)}{\zeta(s)} = (\log \zeta(s))' = -\sum_{p} \sum_{m \ge 1} \frac{\log p}{p^{ms}}.$$

(The coefficient function of the Dirichlet series in the previous display is the *von* Mangoldt function, $\Lambda(p^m) = \log p$ and $\Lambda(n) = 0$ if n is not a prime power.)

Proposition 3.1. $\zeta(s) \neq 0$ for $\operatorname{Re}(s) = 1$.

Proof. Fix any nonzero real t. Define

$$D(s) = \zeta(s)^3 \zeta(s+it)^4 \zeta(s+2it)$$

From the logarithmic derivative computation just above,

$$\frac{D'(s)}{D(s)} = -\sum_{p} \sum_{m \ge 1} \frac{\log p(3 + 4p^{-mit} + p^{-2mit})}{p^{ms}}.$$

We show that $0 \ge \operatorname{ord}_1 D(s)$, i.e., D(s) is nonzero at 1. The order of vanishing is

$$\operatorname{prd}_1 D(s) = \operatorname{res}_1(D'(s)/D(s)) = \lim_{s \to 1^+} (s-1)D'(s)/D(s),$$

with s approaching 1 from the right on the real axis. Because this quantity is an integer it is real, and so it is the limit of s - 1 times the real part of D'(s)/D(s),

$$\operatorname{ord}_1 D(s) = -\lim_{s \to 1^+} (s-1) \sum_p \sum_{m \ge 1} \frac{(3+4\cos(mt\log p) + \cos(2mt\log p))\log p}{p^{ms}}$$

But for any real θ ,

$$3 + 4\cos\theta + \cos 2\theta = 3 + 4\cos\theta + 2\cos^2\theta - 1 = 2(1 + \cos\theta)^2 \ge 0,$$

and so the limit is nonpositive, i.e., $0 \ge \operatorname{ord}_1 D(s)$ as claimed. The result follows because $\operatorname{ord}_1 D(s) \ge -3 + 4 \operatorname{ord}_1 \zeta(s + it)$, precluding the integer $\operatorname{ord}_1 \zeta(s + it)$ from being positive. That is, $\zeta(1 + it) \ne 0$.

3.6. Improved continuation of the logarithmic derivative. In consequence of $\zeta'(s)/\zeta(s)$ extending meromorphically from $\operatorname{Re}(s) > 1$ to $\operatorname{Re}(s) > 0$ with a simple pole at s = 1, and of $\zeta(s)$ never vanishing on $\operatorname{Re}(s) = 1$, also $(s-1)\zeta'(s)/\zeta(s)$ extends holomorphically from $\operatorname{Re}(s) > 1$ to $\operatorname{Re}(s) \ge 1$. Being holomorphic on $\operatorname{Re}(s) \ge 1$ and meromorphic on $\operatorname{Re}(s) > 0$, $(s-1)\zeta'(s)/\zeta(s)$ is in fact holomorphic on an open superset of $\operatorname{Re}(s) \ge 1$.

3.7. Dominant term of the logarithmic derivative near s = 1. For $\operatorname{Re}(s) > 1$, decompose the logarithmic derivative of $\zeta(s)$ in (3) into two terms, as in Euler's proof,

$$\frac{\zeta'(s)}{\zeta(s)} = -\sum_p \frac{\log p}{p^s} - \sum_p \sum_{m \ge 2} \frac{\log p}{p^{ms}} \,, \quad \mathrm{Re}(s) > 1.$$

The second sum defines a holomorphic function on $\operatorname{Re}(s) > 1/2$ because its partial sums are entire and it converges uniformly on compact therein. Indeed, $|p^{ms}| = p^{m\sigma}$ where $\sigma = \operatorname{Re}(s)$, and given $\sigma > 1/2$ there exists p_o such that $\log p < p^{\sigma-1/2}$ for all $p \ge p_o$; so, with $c = 1/(1 - 2^{-1/2}) = 2 + \sqrt{2}$,

$$\sum_{\substack{p \ge p_o \\ m \ge 2}} \frac{\log p}{p^{m\sigma}} = \sum_{p \ge p_o} \frac{\log p}{(1 - p^{-\sigma})p^{2\sigma}} < c \sum_{p \ge p_o} \frac{p^{\sigma - 1/2}}{p^{2\sigma}} = c \sum_{p \ge p_o} \frac{1}{p^{\sigma + 1/2}}.$$

This suffices to prove the uniform convergence.

The dominant term $-\sum_p \log p/p^s$ of $\zeta'(s)/\zeta(s)$ near s = 1 now takes the form -D(s), where D is the Dirichlet-like series

$$D(s) = \sum_{n=1}^{\infty} \frac{c_n \log n}{n^s}, \qquad c_n = \begin{cases} 1 & \text{if } n \text{ is prime} \\ 0 & \text{otherwise.} \end{cases}$$

Crucially, $\{c_n\}$ is the prime-indicator sequence that arose from the Chebyshev theta function and the prime-counting function in section 2.2. This series is holomorphic on the open right half plane $\operatorname{Re}(s) > 1$, and (s-1)D(s) extends holomorphically to an open superset of the closed right half plane $\operatorname{Re}(s) \ge 1$, and D(s) extends holomorphically to this set except for a simple pole at s = 1 with residue $\rho = 1$. Also, the condition $\vartheta(x) = \mathcal{O}(x)$ is already established. These will be precisely the hypotheses for the last result of this writeup, Corollary 4.2 below, whose conclusion is then that $\vartheta(x) \sim \rho x = x$, completing the proof of the Prime Number Theorem.

4. Convergence theorem, corollary on asymptotics, end of the proof

4.1. Theorem.

Theorem 4.1. Consider a holomorphic function f on the open right half plane $\operatorname{Re}(s) > 0$, as follows: α is a bounded locally integrable function on $\mathbb{R}_{\geq 1}$, and f is the integral

$$f(s) = \int_{t=1}^{\infty} \frac{\alpha(t)}{t^{s+1}} \,\mathrm{d}t.$$

Suppose that f extends to a holomorphic function on an open superset of the closed right half plane $\operatorname{Re}(s) \geq 0$. Then the integral that defines f(s) for $\operatorname{Re}(s) > 0$ converges on the closed right half plane $\operatorname{Re}(s) \geq 0$.

The theorem also holds if instead $\{a_n\}$ is a bounded sequence of complex numbers and f(s) is a Dirichlet series

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^{s+1}} \,,$$

by the same proof to follow.

Proof. It suffices to show that the integral converges at s = 0. Indeed, for any real y, the function $\tilde{f}(s) = f(s + iy)$ satisfies the same conditions as f, now with $\tilde{\alpha}(t) = \alpha(t)e^{-iyt}$ (or $\{\tilde{a}_n\} = \{a_n/n^{iy}\}$ in the Dirichlet series case), and the convergence at 0 of the integral that initially defines \tilde{f} is precisely the convergence at iy of the integral that initially defines f.

For any $R \geq 1$ there exists $\delta = \delta_R > 0$ such that f is holomorphic on the compact region determined by the conditions $|s| \leq R$ and $\operatorname{Re}(s) \geq -\delta$, a truncated disk if $\delta < R$. Consider the counterclockwise boundary of this region, consisting of an arc determined by the conditions |s| = R and $\operatorname{Re}(s) \geq -\delta$, and possibly a vertical segment determined by the conditions $|s| \leq R$ and $\operatorname{Re}(s) = -\delta$. Typically the arc will be less than a full circle and the vertical segment will be present. Let A and Brespectively denote the portions of the boundary in the right and left half planes, so that the boundary is $A \cup B$ with A a right semicircle.

Let N be any positive integer. Because $f(0) = f(0)N^0$, Cauchy's integral representation and Cauchy's theorem give

(4)
$$2\pi i f(0) = \int_{A\cup B} f(s) N^s \left(\frac{1}{s} + \frac{s}{R^2}\right) \,\mathrm{d}s.$$

Consider the Nth truncation of the integral for f(s) on $\operatorname{Re}(s) > 0$,

$$f_N(s) = \int_{t=0}^N \alpha(t) e^{-st} \,\mathrm{d}t.$$

This is an entire function of s, and so we may express its value at 0 by integrating over the circle $A \cup -A$ rather than the truncated circle $A \cup B$,

$$2\pi i f_N(0) = \int_{A\cup -A} f_N(s) N^s \left(\frac{1}{s} + \frac{s}{R^2}\right) \,\mathrm{d}s.$$

Further,

$$\int_{-A} f_N(s) N^s \left(\frac{1}{s} + \frac{s}{R^2}\right) \, \mathrm{d}s = \int_A f_N(-s) N^{-s} \left(\frac{1}{s} + \frac{s}{R^2}\right) \, \mathrm{d}s$$

and so in fact

(5)
$$2\pi i f_N(0) = \int_A f_N(s) N^s \left(\frac{1}{s} + \frac{s}{R^2}\right) ds + \int_A f_N(-s) N^{-s} \left(\frac{1}{s} + \frac{s}{R^2}\right) ds.$$

Let $r_N = f - f_N$ denote the Nth remainder, a holomorphic function on an open superset of the closed right half plane $\operatorname{Re}(s) \ge 0$, represented by a tail integral on the open right half plane $\operatorname{Re}(s) > 0$. Proving the theorem amounts to showing that $\lim_N r_N(0) = 0$. Because $r_N = f - f_N$, the calculated expressions (4) and (5) for $2\pi i f(0)$ and $2\pi i f_N(0)$ give

$$2\pi i r_N(0) = \int_A f(s) N^s \left(\frac{1}{s} + \frac{s}{R^2}\right) ds + \int_B f(s) N^s \left(\frac{1}{s} + \frac{s}{R^2}\right) ds - \int_A f_N(s) N^s \left(\frac{1}{s} + \frac{s}{R^2}\right) ds - \int_A f_N(-s) N^{-s} \left(\frac{1}{s} + \frac{s}{R^2}\right) ds$$

which rearranges to give $2\pi i r_N(0)$ as a sum of three terms,

(6)

$$2\pi i r_N(0) = \int_A \left(r_N(s) N^s - f_N(-s) N^{-s} \right) \left(\frac{1}{s} + \frac{s}{R^2} \right) ds$$

$$+ \int_{B \cap \{ |s| = R \}} f(s) N^s \left(\frac{1}{s} + \frac{s}{R^2} \right) ds$$

$$+ \int_{B \cap \{ \operatorname{Re}(s) = -\delta \}} f(s) N^s \left(\frac{1}{s} + \frac{s}{R^2} \right) ds.$$

Next compute some estimates. Let b be a bound of the function α , so that b depends only on f. Let σ denote the real part of s.

• For $\operatorname{Re}(s) > 0$, with b as just above,

$$|r_N(s)| \le \frac{b}{\sigma N^{\sigma}} \,.$$

Indeed, $|r_N(s)| = \left|\int_{t=N}^{\infty} \alpha(t)t^{-s-1} dt\right| \leq b \int_{t=N}^{\infty} t^{-\sigma-1} dt = b/(\sigma N^{\sigma})$. (In the Dirichlet series case, with $r_N(s) = \sum_{n=N}^{\infty} a_n n^{-s-1}$, the upper bound is $b(1/N^{\sigma+1} + 1/(\sigma N^{\sigma}))$.)

• For $\operatorname{Re}(s) > 0$, with b as above,

$$|f_N(-s)| \le \frac{bN^{\sigma}}{\sigma}$$

Indeed, $|f_N(-s)| = \left| \int_{t=1}^N \alpha(t) t^{s-1} dt \right| \le b \int_{t=1}^N t^{\sigma-1} dt = b(N^{\sigma} - 1)/\sigma.$ • For |s| = R,

$$\frac{1}{s} + \frac{s}{R^2} = \frac{2\sigma}{R^2} \,.$$

Indeed, $s = Re^{i\theta}$, and so $s^{-1} + sR^{-2} = (e^{i\theta} + e^{-i\theta})R^{-1} = 2R\cos\theta \cdot R^{-2}$. • For s on the vertical segment portion of B, because $\sigma = -\delta$ and $|s| \le R$,

$$\left|\frac{1}{s} + \frac{s}{R^2}\right| \le \frac{1}{\delta} + \frac{1}{R} = \frac{R + \delta}{R\delta}$$

From the first three estimates and from A having length πR , the first term of $2\pi i r_N(0)$ in (6) satisfies

$$\left| \int_{A} \left(r_N(s) N^s - f_N(-s) N^{-s} \right) \left(\frac{1}{s} + \frac{s}{R^2} \right) \, \mathrm{d}s \right| \le \frac{4\pi b}{R} \,.$$

Let $\varepsilon > 0$ be given. If $R > 4\pi b/\varepsilon$ then $4\pi b/R < \varepsilon$.

For the given $\varepsilon > 0$, and with $R > 4\pi b/\varepsilon$ fixed, take a compatible $\delta = \delta_R > 0$, freely stipulating that $\delta < 1$, such that f is holomorphic on and inside $A \cup B$. Let M bound f on this compact region. The second term of $2\pi i r_N(0)$ in (6) satisfies, again using the first three estimates, the conditions on δ , and a little geometry,

$$\left| \int_{B \cap \{|s|=R\}} f(s) N^s \left(\frac{1}{s} + \frac{s}{R^2} \right) \, \mathrm{d}s \right| \le \frac{8M}{R^2} \int_{\sigma=-\delta}^0 N^\sigma \, \mathrm{d}\sigma < \frac{8M}{R^2 \log N}.$$

If $N > \exp(8M/(R^2\varepsilon))$ then $8M/(R^2\log N) < \varepsilon$.

Still with ε and R and δ , the fourth estimate and the fact that $B \cap \{\operatorname{Re}(s) = -\delta\}$ has length at most 2R show that the third term of $2\pi i r_N(0)$ in (6) satisfies

$$\left| \int_{B \cap \{\operatorname{Re}(s) = -\delta\}} f(s) N^s \left(\frac{1}{s} + \frac{s}{R^2} \right) \, \mathrm{d}s \right| \le \frac{2M(R+\delta)}{\delta N^{\delta}} \,.$$

If $N > (2M(R+\delta)/(\delta\varepsilon))^{1/\delta}$ then $2M(R+\delta)/(\delta N^{\delta}) < \varepsilon$.

Altogether, given $\varepsilon > 0$, take $R > 4\pi b/\varepsilon$ and suitable $\delta = \delta_R < 1$, and then $|2\pi i r_N(0)| < 3\varepsilon$ for all large enough N. Thus $\{r_N(0)\}$ converges to 0, which is to say that the integral that defines f(s) for $\operatorname{Re}(s) > 0$ converges at s = 0 to f(0). \Box

4.2. Corollary. The next result follows from the previous theorem.

Corollary 4.2. Let $\{c_n\}$ be a sequence of nonnegative real numbers such that the sum

$$D(s) = \sum_{n=1}^{\infty} \frac{c_n \log n}{n^s}$$

is holomorphic on the open right half plane $\operatorname{Re}(s) > 1$. Suppose that (s-1)D(s) extends holomorphically to an open superset of the closed right half plane $\operatorname{Re}(s) \ge 1$, so that D(s) extends holomorphically to this set except possibly for a simple pole at s = 1. Let

$$\rho = \operatorname{res}_1 D(s).$$

Suppose that the function

$$S(x) = \sum_{n \le x} c_n \log n \quad for \ real \ x \ge 1$$

satisfies

Then

$$S(x) \sim \rho x.$$

 $S(x) = \mathcal{O}(x).$

Proof. For $\operatorname{Re}(s) > 1$, write D(s) as a Stieltjes integral, integrate by parts with the boundary terms $S(t)/t^s|_1^{\infty}$ vanishing,

$$D(s) = \int_1^\infty \frac{\mathrm{d}S(t)}{t^s} = s \int_1^\infty \frac{S(t)}{t^{s+1}} \,\mathrm{d}t.$$

Consequently for $\operatorname{Re}(s) > 0$, recalling the quantity $\rho = \operatorname{res}_1 D(s)$,

$$\int_{t=1}^{\infty} \frac{S(t)/t - \rho}{t^{s+1}} \, \mathrm{d}t = \frac{D(s+1)}{s+1} - \frac{\rho}{s}$$

Because $D(s+1)/(s+1) \sim \rho/(s(s+1)) = \rho/s - \rho/(s+1)$ for s near 0, the right side extends holomorphically to an open superset of the closed right half plane $\operatorname{Re}(s) \geq 0$, and hence so does the left side. Further, the function $S(t)/t - \rho$ is bounded and locally integrable on $\mathbb{R}_{\geq 1}$, so it meets the conditions on the α in the convergence theorem. The theorem says that the integral on the left side converges for $\operatorname{Re}(s) \geq 0$, and in particular for s = 0. That is,

$$\int_{t=1}^{\infty} \frac{S(t) - \rho t}{t^2} \, \mathrm{d}t \quad \text{converges.}$$

10

This convergence and the fact that S(x) is nonnegative and increasing show that $S(x) \sim \rho x$, meaning that $\lim_{x\to\infty} S(x)/x = \rho$, as follows. Let $\varepsilon > 0$ be given. Suppose that $S(x) \ge (1 + \varepsilon)\rho x$ for a sequence of x-values going to ∞ . Estimate that for such x,

$$\int_{t=x}^{(1+\varepsilon)x} \frac{S(t)-\rho t}{t^2} \,\mathrm{d}t \ge \int_{t=x}^{(1+\varepsilon)x} \frac{(1+\varepsilon)\rho x-\rho t}{t^2} \,\mathrm{d}t = \rho \int_{t=1}^{1+\varepsilon} \frac{1+\varepsilon-t}{t^2} \,\mathrm{d}t,$$

the last quantity positive and independent of x. This contradicts the convergence of the integral. Similarly, now freely taking $\varepsilon < 1$, if $S(x) \leq (1-\varepsilon)\rho x$ for a sequence of x-values going to ∞ then for such x,

$$\int_{t=(1-\varepsilon)x}^{x} \frac{S(t)-\rho t}{t^2} \, \mathrm{d}t \le \rho \int_{t=1-\varepsilon}^{1} \frac{1-\varepsilon-t}{t^2} \, \mathrm{d}t,$$

negative and independent of x, again violating convergence.

4.3. End of the proof. As noted at the end of section 3.7, the case where $c_n = 1$ if n is prime and $c_n = 0$ otherwise completes the proof of the Prime Number Theorem. In this case, D(s) is (minus) the dominant term of the logarithmic derivative $\zeta'(s)/\zeta(s)$, with residue $\rho = 1$ at s = 1, and S(x) is the Chebyshev theta function $\vartheta(x)$, known to be $\mathcal{O}(x)$. The asymptotic result $\vartheta(x) \sim x$ from Corollary 4.2 is exactly what is needed to finish the Prime Number Theorem argument.