JACOBI’'S BASIC THETA FUNCTION
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Our main use of the theta function will be that its restriction to z = 0 is a modular
form in 7, and the Euler-Riemann zeta function is essentially the Mellin transform
of the modular form: this is one way that Riemann established the analytic contin-
uation and functional equation of zeta. But this writeup will briefly describe how
the theta function solves the heat equation. Theta functions in general are power-
fully versatile. David Mumford’s Tata Lectures on Theta volumes are an excellent
source of reading on this topic.

The magnitude of the 0(x + iy, o + it) summand is
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Thus the series converges rapidly for any ¢ > 0, thanks to the summand-component
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Clearly 6(z,7) is Z-periodic in z. (Its periodicity in 7, both stronger and more
subtle than in z, will be discussed in a separate writeup.)

Restrict the theta function to z = z € R and 7 = it with ¢ > 0, and give the
restriction 6(z,it)—which takes real values—its own name,
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The idea is that x is a position variable and ¢ a time variable, and the restriction
visibly satisfies the heat equation,
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Furthermore, the limiting initial time-value of w(x,t) is the Z-periodicized Dirac
delta function in the position variable,
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Thus we have a periodic solution of the heat equation whose limiting initial condi-
tion is particularly handy.

The general heat equation is now easy to solve. Consider an arbitrary periodic
initial time-value condition wu,. Let v, be its restriction to [0,1) extended by zero
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to R, so that wu, is its Z-periodicization,
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Consider the convolution of uy and v,,
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Differentiation under the integral sign shows that u again satisfies the heat equation,
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Furthermore, the limiting initial-time value of u is
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Thus, modulo many informalities, the theta function solves the periodic heat equa-
tion.



