MATHEMATICS 311: COMPLEX ANALYSIS - ASSIGNMENT 4

Reading: Marsden, sections 2.4, 2.5.

Problems:

1. Evaluate $\int_{\gamma} \frac{z e^{z}}{z+2 i} \mathrm{~d} z$ in the following two cases: (a) $\gamma=\{z \in \mathbb{C}:|z|=1\}$, (b) $\gamma=\{z \in \mathbb{C}:|z|=3\}$.
2. Evaluate $\int_{|z|=1} e^{z} z^{-4} \mathrm{~d} z$.
3. Show that for any complex number t,

$$
\frac{1}{2 \pi i} \int_{|z|=3} \frac{e^{z t}}{z^{2}+1} \mathrm{~d} z=\sin t
$$

4. Prove Cauchy's inequality: If f is analytic in an open neighborhood of the closed disk $\{\zeta \in \mathbb{C}:|\zeta-z| \leq r\}$ and if f satisfies $|f(\zeta)| \leq M$ whenever $|\zeta-z|=r$ then $\left|f^{(n)}(z)\right| / n!\leq M / r^{n}$.
5. Show that if f is analytic in the entire plane \mathbb{C}, and for some positive real number c and some nonnegative integer n and some positive real number r_{o} we have $|f(z)| \leq c|z|^{n}$ for all z such that $|z| \geq r_{o}$, then f must be a polynomial of degree at most n. (Hint: Since f is represented everywhere by its power series about 0 , it suffices to show that $f^{(n+m)}(0)=0$, for all positive integers m, i.e., that $\left|f^{(n+m)}(0)\right|$ is arbitrarily small for any such m.)
6. Show that there can not exist any function f that is analytic in an open neighborhood of a point z and satisfies $\left|f^{(n)}(z)\right| / n!>n^{n}$ for all positive integers n.
