
THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN

ENTIRE FUNCTION

These notes are drawn closely from chapter 5 of Princeton Lectures in Anal-
ysis II: Complex Analysis by Stein and Shakarchi.

Let f : C −→ C be nonzero and entire, with infinitely many roots, vanishing to
order m ≥ 0 at 0. The nonzero roots of f , with repetition for multiplicity, form a
sequence {an} such that limn |an| =∞. For an initial product form that attempts
to factor f , first define

E0(ζ) = 1− ζ,
an entire function of ζ that vanishes only for ζ = 1 and goes to 1 as ζ goes to 0.
Thus E0(z/an) vanishes only at z = an, and for fixed z it goes to 1 as n goes to∞.
Then define

p0(z) = zm
∞∏
n=1

E0(z/an) = zm
∞∏
n=1

(1− z/an).

However, this product need not even converge, much less converge to an entire
function that matches the roots of f . We will see that a sufficient condition for
such convergence is that

∑∞
n=1 1/|an| converges, but this condition fails unless

the an are sparse enough.

Recall that
∑∞
j=1

ζj

j = ln((1− ζ)−1) and thus e
∑∞
j=1

ζj

j = (1− ζ)−1 for |ζ| < 1.

With this in mind, for any nonnegative integer k generalize E0 to

Ek(ζ) = (1− ζ)eζ+
ζ2

2 +
ζ3

3 +···+ ζ
k

k ,

again an entire function of ζ that vanishes only for ζ = 1 and goes to 1 more quickly
for larger k as ζ goes to 0; this rate of convergence will be quantified below. Again
Ek(z/an) vanishes only at z = an, and so for any nonnegative integer sequence
{kn} the expression

p{kn}(z) = zm
∞∏
n=1

Ekn(z/an) = zm
∞∏
n=1

(1− z/an)e
z/an+

(z/an)
2

2 +···+
(z/an)

kn

kn

might be an entire function having the roots as f . This p{kn} improves on p0
because for large enough n to make z/an small, its multiplicands Ekn(z/an) can
be made as close to 1 as desired by choosing larger kn, and we will see that in
particular the sequence {kn} = {n} makes p{kn} converge to an entire function
with the same roots as f .

Once we know that some p{kn} is entire with the same roots as f , their quotient
f/p{kn} defines an entire function that never vanishes. As will be reviewed, the
quotient therefore takes the form eg with g entire. Thus the factorization of f is

f(z) = eg(z)zm
∞∏
n=1

En(z/an).

So far, these ideas are due to Weierstrass. Hadamard added to them, as follows.
If f has finite order , meaning that for some positive constants A, B, and ρ it
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satisfies a growth bound

|f(z)| ≤ AeB|z|
ρ

for all z,

then its roots are sparse; specifically,
∑∞
n=1 |an|−s converges if s > ρ. We will see

that in consequence of this, letting k = bρc, the Weierstrass factorization improves
to f(z) = fk(z) = eg(z)zm

∏∞
n=1Ek(z/an), now with nth multiplicand Ek(z/an)

rather than En(z/an). That is, the convergence factors all have equal length k
according to ρ. In practical examples k is often small, e.g., 0 or 1. A second
consequence of the sparseness of the roots is that g(z) is a polynomial of degree at
most k, as we will also see.
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Part 1. Weierstrass Factorization of an Entire Function

1. Estimate of Ek − 1

Let k be a nonnegative integer. Recall the definition

Ek(ζ) = (1− ζ)eζ+
ζ2

2 +
ζ3

3 +···+ ζ
k

k .

For k = 0 we have E0(ζ) = 1 − ζ and so |E0(ζ) − 1| = |ζ| for all ζ ∈ C. We
generalize this to an estimate of |Ek(ζ)−1| for any k, though now with a condition

on ζ. The argument will show how the factor eζ+ζ
2/2+ζ3/3+···+ζk/k brings Ek(ζ)

closer to 1 for larger k when ζ is small.
Suppose that |ζ| ≤ 1/2; here the 1/2 could be any positive r < 1 with no essential

change to the argument to follow, but we use 1/2 for definiteness. Then

1− ζ = elog(1−ζ) = e
−ζ− ζ

2

2 −
ζ3

3 −···−
ζk

k −
ζk+1

k+1 −···,
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and so, because Ek(ζ) = (1− ζ)eζ+ζ
2/2+ζ3/3+···+ζk/k,

Ek(ζ) = ew where w = wk(ζ) = − ζ
k+1

k+1 −
ζk+2

k+2 − · · · .

Because |ζ| ≤ 1/2,

|w| ≤ |ζ|k+1
∞∑
j=0

1

2j
= 2|ζ|k+1,

and in particular |w| ≤ 1, even for k = 0. So now,

|Ek(ζ)− 1| = |ew − 1| ≤
∞∑
j=1

|w|j

j!
≤ (e− 1)|w| because |w| ≤ 1.

Together the previous two displays give our desired estimate,

(1) |Ek(ζ)− 1| ≤ 2(e− 1)|ζ|k+1 if |ζ| ≤ 1/2.

2. Infinite product convergence criterion

Let {zn} be a complex sequence, with zn 6= −1 for all n. We show:

If

∞∑
n=1

|zn| converges then

∞∏
n=1

(1 + zn) converges and can be rearranged.

Begin by noting that all but finitely many zn satisfy |zn| ≤ 1/2. We freely work
only with these zn, for which

| log(1 + zn)| =
∣∣zn(1− zn/2 + z2n/3 + · · · )

∣∣ ≤ 2|zn|.

Thus the sequence
{∑N

n=1 log(1 + zn)
}

of partial sums of
∑∞
n=1 log(1 + zn) con-

verges absolutely, and so it converges and can be rearranged. Consequently, because
the complex exponential function is continuous, convergence and rearrangability
also hold for the sequence{

e
∑N
n=1 log(1+zn)

}
=

{
N∏
n=1

elog(1+zn)

}
=

{
N∏
n=1

(1 + zn)

}
.

This is the sequence of partial products of
∏∞
n=1(1 + zn), and the convergence

criterion is established. The argument has shown further that
∏∞
n=1(1 + zn) is

nonzero under the hypotheses on {zn}, because it is e
∑∞
n=1 log(1+zn).

Theorem 2.1. Let Ω be domain in C. Let {ϕn} be a sequence of analytic functions
on Ω. Suppose that:

For every compact K in Ω
there is a summable sequence {xn} = {xn(K)} in R≥0 such that
|ϕn(z)| ≤ xn for all n, uniformly over z ∈ K.

Then the product p(z) =
∏∞
n=1(1 + ϕn(z)) is analytic on Ω, and its roots are

precisely the values z ∈ Ω such that 1 + ϕn(z) = 0 for some n.

The partial products of p(z) are analytic on Ω. For any compact K in Ω the
bound |ϕn(z)| ≤ xn for all n uniformly over K combines with the argument just
given to establish that p(z) converges uniformly on K. Because p(z) on Ω has
analytic partial products and converges uniformly on compacta it is analytic. The
argument just given also establishes the last statement of the theorem.
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Example 1. Let a sequence {an} of nonzero complex numbers be given such
that limn→∞ |an| =∞. Let ϕn(z) = En(z/an)−1 for each n. Given any compact K
in C, there exists no ∈ Z≥0 such that |z/an| ≤ 1/2 for all n ≥ no, uniformly over
z ∈ K. Let xn = supz∈K |ϕn(z)| for n < no, and let xn = (e − 1)/2n for n ≥ no.
Thus, using (1) from the end of the previous section,

|ϕn(z)| = |En(z/an)− 1| ≤ 2(e− 1)|z/an|n+1 ≤ xn for all n ≥ no and z ∈ K,

and certainly |ϕn(z)| ≤ xn for all n < no and z ∈ K. This shows that the product∏∞
n=1En(z/an) is entire with roots {an}.
Example 2. Let a sequence {an} of nonzero complex numbers be given such

that
∑∞
n=1 |an|−k−1 converges for some nonnegative integer k. This is a stronger

hypothesis than in the previous example. Let ϕn(z) = Ek(z/an) − 1 for each n,
here with Ek rather than En as in the previous example. Given any compact K
in C, there exists c > 0 such that 2(e − 1)|z|k+1 ≤ c for all z ∈ K, and there
exists no ∈ Z≥0 such that |z/an| ≤ 1/2 for all n ≥ no. Let xn = supz∈K |ϕn(z)|
for n < no, and let xn = c/|an|k+1 for n ≥ no. Thus, again using (1),

|ϕn(z)| = |Ek(z/an)− 1| ≤ 2(e− 1)|z/an|k+1 ≤ xn for all n ≥ no and z ∈ K,

and certainly |ϕn(z)| ≤ xn for all n < no and z ∈ K. This shows that the product∏∞
n=1Ek(z/an) is entire with roots {an}. Especially, if

∑∞
n=1 1/|an| converges then

this holds for
∏∞
n=1(1 − z/an). And if

∑∞
n=1 1/|an|2 converges then this holds for∏∞

n=1(1− z/an)ez/an .
Example 3. (This example is not necessary for the present writeup.) Let Ω be

the right half plane Re(s) > 1, and let ϕn(s) equal (1−p−s)−1−1 = (1−p−s)−1p−s
if n is a prime p, while ϕn is 0 if n is composite; the variable s rather than z is
standard in this context. Let K be a compact subset of Ω. There exists some σ > 1
such that Re(s) ≥ σ on K. Let {xn} = {2n−σ}. For any prime p, for all s ∈ K,

|ϕp(s)| = |(1− p−s)−1p−s| ≤ 2p−σ = xp,

and certainly |ϕn(s)| ≤ xn for composite n and s ∈ K. This shows that the product
ζ(s) =

∏
p(1−p−s)−1 is holomorphic on Re(s) > 1, with no reference to it equaling

the sum
∑∞
n=1 n

−s.

3. A non-vanishing analytic function is an exponential

We show: If Ω is a simply connected region, and if f : Ω −→ C is analytic and
never vanishes, then f takes the form eg for some analytic g on Ω.

The argument is constructive. Let a be a point of Ω, and take any value
of log(f(a)). Introduce

g(z) = log(f(a)) +

∫ z

ζ=a

f ′(ζ) dζ

f(ζ)
,

well defined because Ω is simply connected. Then g′(z) = f ′(z)/f(z), and so(
f(z)e−g(z)

)′
= (f ′(z)− f(z) · f ′(z)/f(z))e−g(z) = 0.

Also f(a)e−g(a) = 1, and therefore f = eg.
Especially, if the product p(z) = zm

∏
nEkn(z/an) is entire and has the same

roots as f(z), then f(z) = eg(z)p(z) for some entire g.
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4. Weierstrass product

Let f be nonzero entire and have nonzero roots {an}. These roots satisfy the
condition limn |an| = ∞, and so the first example at the end of section 2 shows
that the product p(z) = zm

∏∞
n=1En(z/an) converges to an entire function having

the same roots as f . Section 3 therefore gives the Weierstrass factorization of f ,

f(z) = eg(z)zm
∞∏
n=1

En(z/an).

Here the convergence factor of En gets longer as n grows, and all that we know
about g is that it is entire.

Part 2. Hadamard Factorization of a Finite-Order Entire Function

Let f be a nonzero entire function of finite order at most ρ > 0, meaning that
for some positive constants A and B it satisfies a growth bound

|f(z)| ≤ AeB|z|
ρ

for all z.

Here the condition for all z can be replaced by for all z such that |z| > R for some R.
The actual order of f is the infimum of all such ρ; for example, if |f(z)| ≤ Ae|z| ln |z|
but |f(z)| � Ae|z|, or if |f(z)| ≤ p(|z|)e|z| for some polynomial p but |f(z)| � Ae|z|,
then still f has order 1. If f has finite order ρf and similarly for g then fg has
finite order max{ρf , ρg}.

Let f have order m ∈ Z≥0 at 0. Let {an} be the nonzero roots of f , with
multiplicity, so that |an| → ∞. For any r ≥ 0, let n(r) = nf (r) denote the number
of nonzero roots an of f such that |an| < r. The terminology f , ρ, m, {an}, n is in
effect for the rest of this writeup. We note that if f is entire with a root of order m
at 0, then f has order at most ρ if and only if f/zm has order at most ρ.

5. Sparseness of roots: statement

To prepare for Hadamard’s factorization theorem, our first main goal is as follows.

Theorem 5.1. Let f , ρ, {an}, and n be as just above. Then

(1) n(r) ≤ C|r|ρ for all large enough r.
(2)

∑∞
n=1 |an|−s converges for all s > ρ.

The main result needed to prove the theorem is a variant of Jensen’s formula,
to be established next.

6. Jensen’s formula

For R > 0 and ϕ analytic on the closed complex ball BR, where ϕ(0) 6= 0
and ϕ 6= 0 on the boundary circle CR, letting the finitely many roots of ϕ be
denoted {an} with repetition for multiplicity,

(J1) ln |ϕ(0)| =
∑
n

ln
|an|
R

+
1

2π

∫ 2π

θ=0

ln |ϕ(Reiθ)|dθ.

The proof begins with two reductions:

• The formula for general R follows from the formula for R = 1.
• The formula for a product ϕ1ϕ2 follows from the formula for ϕ1 and for ϕ2.
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• The decomposition ϕ(z) = ϕo(z)
∏
n(z − an), where ϕo(z) is the analytic

extension of ϕ(z)/
∏
n(z− an), reduces the formula for R = 1 to two cases,

where ϕ has no roots and where ϕ(z) = z − a1.

If ϕ on B1 has no roots then it takes the form ϕ = eg, as discussed above. Let
g = u+ iv with u and v harmonic conjugates, so that |ϕ| = eu and thus ln |ϕ| = u.
The mean value property of harmonic functions gives

ln |ϕ(0)| = u(0) =
1

2π

∫ 2π

θ=0

u(eiθ) dθ =
1

2π

∫ 2π

θ=0

ln |ϕ(eiθ)|dθ.

If ϕ(z) = z − a1 with |a1| < 1 then the desired formula reduces to∫ 2π

θ=0

ln |eiθ − a1|dθ = 0.

Because ln |eiθ − a1| = ln |1 − e−iθa1|, and then we may replace θ by −θ in the
integral, this is ∫ 2π

θ=0

ln |1− a1e−iθ|dθ = 0.

Similarly to the first case, the function f(z) = 1 − a1z takes the form eg on B1,
where g = u+ iv, and so again the integral is a mean value integral for u. But this
time u(0) = 0 because ϕ(0) = 1, and so the integral is 0 as desired.

A variant of Jensen’s formula is as follows.

(J2) ln |ϕ(0)| = −
∫ R

x=0

nϕ(x)
dx

x
+

1

2π

∫ 2π

θ=0

ln |ϕ(Reiθ)|dθ.

This follows from Jensen’s formula (J1) if we can establish the equality

−
∫ R

x=0

n(x)
dx

x
=
∑
n

ln
|an|
R

,

in which n = nϕ. This equality reduces to the case R = 1. Define ηn(x) to be 1 if
x > |an| and 0 otherwise, so that n(x) =

∑
n ηn(x), and compute,

−
∫ 1

x=0

n(x)
dx

x
= −

∑
n

∫ 1

x=0

ηn(x)
dx

x
= −

∑
n

∫ 1

x=|an|

dx

x
=
∑
n

ln |an|.

7. Sparseness of roots: proof

We prove part (1) of Theorem 5.1. Partially reiterating the theorem’s hypotheses,
the nonzero entire function f has finite order at most ρ and root-counting function n,
and we want to show that

n(r) ≤ Crρ for some C ∈ R>0 and all large enough r.

It suffices to prove this in the case f(0) 6= 0. For any r ∈ R>0, let R = 2r, so that∫ R
r

dx/x = ln 2. Then, using the variant Jensen’s formula (J2) for the last step in
the next computation,

n(r) ln 2 = n(r)

∫ R

r

dx

x
≤
∫ R

0

n(x)
dx

x
=

1

2π

∫ 2π

θ=0

ln |f(Reiθ)|dθ − ln |f(0)|.

Consequently,

n(r) ≤ C1r
ρ + C2 for some C1 ∈ R>0 and C2 ∈ R, for all r ∈ R>0,
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and the result follows.

We prove part (2) of Theorem 5.1. Recall that the nonzero roots of f are {an}.
We show that

∑
n |an|−s converges if s > ρ. Indeed, we now have n(r) ≤ Crρ for

all r ≥ 2jo for some nonnegative integer jo. Compute,∑
|an|≥2jo

|an|−s =

∞∑
j=jo

∑
2j≤|an|<2j+1

|an|−s ≤
∞∑
j=jo

n(2j+1)2−js ≤ C
∞∑
j=jo

2(j+1)ρ−js.

The last sum is 2ρ
∑∞
j=jo

(2ρ−s)j , which converges because s > ρ.

8. Hadamard product, part 1

Let f be nonzero entire of finite order at most ρ > 0. Consider the nonnegative
integer

k = bρc,
so that k ≤ ρ < k + 1. As just shown, the nonzero roots {an} are such that∑∞
n=1 |an|−k−1 converges, and so the second example at the end of section 2 shows

that the product zm
∏∞
n=1Ek(z/an) converges to an entire function having the

same roots as f . Section 3 therefore gives the Hadamard factorization of f ,

f(z) = eg(z)zm
∞∏
n=1

Ek(z/an).

Here all the terms Ek(z/an) have convergence factors of the same length. The
remaining work is to analyze g(z). This is more technical.

9. Lower bound

Freely ignoring any root of f at 0, to show that g is a low degree polynomial
we must bound the quotient f(z)/

∏∞
n=1Ek(z/an) from above, and this requires

bounding the product
∏∞
n=1Ek(z/an) from below.

Again with f having finite order at most ρ and with k = bρc, consider any s
such that ρ < s < k + 1. Thus s > k. Consider any z ∈ C. We want to show that
subject to a condition on z to be specified,

∏∞
n=1Ek(z/an) is bounded from below

as follows, ∣∣∣∣∣
∞∏
n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s .
For the infinitely many values n such that |z/an| ≤ 1/2, we have shown in sec-

tion 1 that Ek(z/an) = ew where w = −
∑
j≥k+1(z/an)j/j and so |w| ≤ 2|z/an|k+1.

Because |ew| ≥ e−|w|,

|Ek(z/an)| ≥ e−2|z/an|
k+1

= e−2|z/an|
k+1−s|z/an|s ≥ e−(1/2)

k−s|z|s/|an|s .

Thus, because
∑∞
n=1 |an|−s converges,∣∣∣∣∣∣

∏
n:|z/an|≤1/2

Ek(z/an)

∣∣∣∣∣∣ ≥ e−c|z|s ,
with c = 2s−k

∑∞
n=1 |an|−s.

For the finite many values n such that |z/an| > 1/2,

|Ek(z/an)| = |1− z/an| |e
∑k
j=1(z/an)

j/j |,
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and, again because |ew| ≥ e−|w|, and noting that |2z/an| ≥ 1, the exponential term
satisfies

|e
∑k
j=1(z/an)

j/j | ≥ e−
∑k
j=1 |2z/an|

j/(2jj)| ≥ e−c|z|
k

≥ e−c|z|
s

,

with c = k2k/ak1 . So in order to show the condition |
∏∞
n=1Ek(z/an)| ≥ e−c|z|

s

,
only the non-exponential terms remain, and we need to show that∏

n:|z/an|>1/2

|1− z/an| ≥ e−c|z|
s

.

However, this is not guaranteed until we add a condition on z. For each positive
integer n, let Bn denote the open ball about an of radius |an|−k−1. We stipulate
that z lie outside

⋃
nBn. For such z,

|1− z/an| = |z − an|/|an| ≥ |an|−k−2 ≥ (2|z|)−k−2.

Take ε > 0 such that s− ε > ρ, and thus n(2|z|) ≤ c|z|s−ε for large z. Thus,∏
n:|z/an|>1/2

|1− z/an| ≥ (2|z|)−(k+2)n(2|z|) ≥ (2|z|)−c|z|
s−ε

,

and the desired result follows,∏
n:|z/an|>1/2

|1− z/an| ≥ e−c|z|
s−ε ln(2|z|) ≥ e−c|z|

s

.

For each positive integer n, again let Bn denote the open ball about an of ra-
dius |an|−k−1, let An denote the open annulus generated by rotating Bn around 0,
and let In denote the intersection of An with R>0. For all large integers N , the
interval [N,N + 1) contains a point r disjoint from

⋃
n In, and so the circle Cr is

disjoint from
⋃
nAn, therefore disjoint from

⋃
nBn. Thus there is a sequence of

positive values r that goes to ∞ such that each circle Cr is disjoint from
⋃
nBn.

10. An entire function with polynomial-growth real part is a
polynomial

We show: Let g = u + iv be entire and satisfy u(reiθ) ≤ Crs for a sequence of
positive values r that goes to ∞, with s ≥ 0. Then g is a polynomial of degree at
most s.

Because u is bounded only from one side, as compared to a bound on |u|, much
less on |g|, the proof is more than simply Cauchy’s bound. Take any r as just
described and any integer n > s. Cauchy’s formula gives

g(n)(0)

n!
=

1

2πi

∫ 2π

θ=0

g(reiθ)

(reiθ)n+1
d(reiθ),

which is to say,

g(n)(0)

n!
=

1

2πrn

∫ 2π

θ=0

g(reiθ)e−inθ dθ.

Also, Cauchy’s theorem gives
∫ 2π

θ=0
g(reiθ)ei(n−1)θ d(reiθ) = 0, and it follows that∫ 2π

θ=0
g(reiθ)einθ dθ = 0, from which by complex conjugation,

0 =
1

2πrn

∫ 2π

θ=0

g(reiθ)e−inθ dθ.
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The previous two displayed equations combine to give, recalling that g = u + iv
and so g + g = 2u,

g(n)(0)

n!
=

1

πrn

∫ 2π

θ=0

u(reiθ)e−inθ dθ,

or, recalling that u(reiθ) ≤ Crs and noting that because Crs is independent of θ

and
∫ 2π

θ=0
e−inθ dθ = 0,

−g
(n)(0)

n!
=

1

πrn

∫ 2π

θ=0

(Crs − u(reiθ))e−inθ dθ,

from which, because Crs − u(reiθ) ≥ 0 for all θ,

|g(n)(0)|
n!

≤ 1

πrn

∫ 2π

θ=0

(Crs − u(reiθ)) dθ = 2Crs−n − 2u(0)r−n.

Let r grow to show that g(n)(0) = 0. Thus the entire function

g(z) =

∞∑
n=0

g(n)(0)

n!
zn for all z ∈ C

is a polynomial of degree at most s, as claimed.

11. Hadamard product, part 2

Our nonzero entire function f has finite order at most ρ, has a root of orderm ≥ 0
at 0, and has nonzero roots {an}. As before, let

k = bρc,

and consider any s such that

ρ < s < k + 1.

Already we have

f(z) = eg(z)zm
∞∏
n=1

Ek(z/an).

Now we show that g is a polynomial of degree at most k.
For a sequence of positive values r that goes to ∞, we have∣∣∣∣∣

∞∏
n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s if |z| = r,

from which certainly ∣∣∣∣∣zm
∞∏
n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s if |z| = r.

Consequently, with g = u+ iv, because also |f(z)| ≤ AeB|z|ρ ,

eu(z) = |eg(z)| ≤ AeB|z|
ρ+c|z|s ≤ eC|z|

s

if |z| = r,

which is to say,

u(reiθ) ≤ Crs.
As just shown, g(z) is a polynomial of degree at most s, hence degree at most bsc,
which is to say degree at most k.
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12. The Euler–Riemann zeta function

We establish Hadamard’s product formula

(s− 1)ζ(s) = ea+bs
∏
n≥1

(
1 +

s

2n

)
e−s/2n

∏
ρ

(
1− s

ρ

)
es/ρ, s ∈ C.

Here ρ runs through the nontrivial zeros of the zeta function, those lying in the
critical strip 0 < Re(s) < 1. Although the values of a and b aren’t particularly
important, they are a = − log 2 and b = ζ ′(0)/ζ(0)− 1 = log 2π − 1.

The function

Zentire(s) = s(1− s)π−s/2Γ(s/2)ζ(s), s ∈ C
extends from an analytic function on the right half plane Re(s) > 1 to an entire
function, and the extension is symmetric about the vertical line Re(s) = 1/2, i.e.,
it is invariant under the replacing s by 1− s.

Let s = σ + it. For σ ≥ 1/2, we have upper bounds of the four constituents s,
π−s/2, Γ(s), and (1− s)ζ(s) of Zentire(s), as follows:

• |s| ≤ e|s| for large s.
• |π−s/2| = π−σ/2 ≤ π−1/4.
• |Γ(s/2)| ≤ Γ(σ/2), and by Stirling’s formula, this is asymptotically at most
Aeσ lnσ, in turn at most Ae|s| ln |s|.
• Some analysis shows that after extending ζ(s) − 1/(s − 1) leftward from
σ > 1 to σ > 0, we have |ζ(s)− 1/(s− 1)| ≤ ζ(3/2)|s| for σ ≥ 1/2, and so
|(1− s)ζ(s)| ≤ 1 + ζ(3/2)|s| for σ ≥ 1/2; from this, certainly |(1− s)ζ(s)| ≤
e|s| for large s with Re(s) ≥ 1/2.

Altogether these give the upper bound

|Zentire(s)| ≤ AeB|s| ln |s|, Re(s) ≥ 1/2.

And because |1− s| ∼ |s|, the symmetry of Zentire(s) gives

|Zentire(s)| ≤ AeB|s| ln |s|, Re(s) < 1/2.

Altogether Zentire(s) has order at most 1, and therefore it has a Hadamard product
expansion

s(1− s)π−s/2Γ(s/2)ζ(s) = ea+bs
∏
ρ

(
1− s

ρ

)
es/ρ, s ∈ C.

But also the reciprocal gamma function has a well known product expansion, in
which γ denotes the Euler-Mascheroni constant,

1/Γ(s) = eγss
∏
n≥1

(
1 +

s

n

)
e−s/n, s ∈ C.

Such a product expression, though with ea
′+b′s rather than eγs, follows from the

estimate |1/Γ(s)| ≤ AeB|s| ln |s| (see Stein and Shakarchi, Theorem 6.1.6, page 165).
Divide the penultimate display by −sπ−s/2Γ(s/2) and use the previous display to
get, with new a and b, the claimed result,

(s− 1)ζ(s) = ea+bs
∏
n≥1

(
1 +

s

2n

)
e−s/2n

∏
ρ

(
1− s

ρ

)
es/ρ, s ∈ C.
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13. The sine function

One readily shows that the sine function has order 1, and so for some b ∈ C,

sin(πz) = ebzπz
∏
n≥1

(
1− z2

n2

)
.

We show that b = 0. Indeed, write the previous display as

sin(πz)

πz
= ebz

∏
n≥1

(
1− z2

n2

)
,

with the left side continued analytically to 1 at z = 0. This says that for small z,

1 + o(z) =
(
1 + bz + o(z)

)(
1 + o(z)

)
= 1 + bz + o(z),

from which b = 0. As an exercise, tracking z2-terms as well shows that ζ(2) = π2/6.
In fact, an elementary formula for ζ(2d) where d = 1, 2, 3, . . . can be extracted
from the Taylor series expansion and the product expansion of sin(πz)/(πz). This
is unsurprising in light of a well known method to obtain ζ(2d) from the sum
expansion of π cot(πz), the logarithmic derivative of sin(πz).


