THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN ENTIRE FUNCTION

These notes are drawn closely from chapter 5 of Princeton Lectures in Analysis II: Complex Analysis by Stein and Shakarchi.

Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be nonzero and entire, with infinitely many roots, vanishing to order $m \geq 0$ at 0 . The nonzero roots of f, with repetition for multiplicity, form a sequence $\left\{a_{n}\right\}$ such that $\lim _{n}\left|a_{n}\right|=\infty$. For an initial product form that attempts to factor f, first define

$$
E_{0}(\zeta)=1-\zeta
$$

an entire function of ζ that vanishes only for $\zeta=1$ and goes to 1 as ζ goes to 0 . Thus $E_{0}\left(z / a_{n}\right)$ vanishes only at $z=a_{n}$, and for fixed z it goes to 1 as n goes to ∞. Then define

$$
p_{0}(z)=z^{m} \prod_{n=1}^{\infty} E_{0}\left(z / a_{n}\right)=z^{m} \prod_{n=1}^{\infty}\left(1-z / a_{n}\right)
$$

However, this product need not even converge, much less converge to an entire function that matches the roots of f. We will see that a sufficient condition for such convergence is that $\sum_{n=1}^{\infty} 1 /\left|a_{n}\right|$ converges, but this condition fails unless the a_{n} are sparse enough.

Recall that $\sum_{j=1}^{\infty} \frac{\zeta^{j}}{j}=\ln \left((1-\zeta)^{-1}\right)$ and thus $e^{\sum_{j=1}^{\infty} \frac{\zeta^{j}}{j}}=(1-\zeta)^{-1}$ for $|\zeta|<1$. With this in mind, for any nonnegative integer k generalize E_{0} to

$$
E_{k}(\zeta)=(1-\zeta) e^{\zeta+\frac{\zeta^{2}}{2}+\frac{\zeta^{3}}{3}+\cdots+\frac{\zeta^{k}}{k}}
$$

again an entire function of ζ that vanishes only for $\zeta=1$ and goes to 1 more quickly for larger k as ζ goes to 0 ; this rate of convergence will be quantified below. Again $E_{k}\left(z / a_{n}\right)$ vanishes only at $z=a_{n}$, and so for any nonnegative integer sequence $\left\{k_{n}\right\}$ the expression

$$
p_{\left\{k_{n}\right\}}(z)=z^{m} \prod_{n=1}^{\infty} E_{k_{n}}\left(z / a_{n}\right)=z^{m} \prod_{n=1}^{\infty}\left(1-z / a_{n}\right) e^{z / a_{n}+\frac{\left(z / a_{n}\right)^{2}}{2}+\cdots+\frac{\left(z / a_{n}\right)^{k_{n}}}{k_{n}}}
$$

might be an entire function having the roots as f. This $p_{\left\{k_{n}\right\}}$ improves on p_{0} because for large enough n to make z / a_{n} small, its multiplicands $E_{k_{n}}\left(z / a_{n}\right)$ can be made as close to 1 as desired by choosing larger k_{n}, and we will see that in particular the sequence $\left\{k_{n}\right\}=\{n\}$ makes $p_{\left\{k_{n}\right\}}$ converge to an entire function with the same roots as f.

Once we know that some $p_{\left\{k_{n}\right\}}$ is entire with the same roots as f, their quotient $f / p_{\left\{k_{n}\right\}}$ defines an entire function that never vanishes. As will be reviewed, the quotient therefore takes the form e^{g} with g entire. Thus the factorization of f is

$$
f(z)=e^{g(z)} z^{m} \prod_{n=1}^{\infty} E_{n}\left(z / a_{n}\right)
$$

So far, these ideas are due to Weierstrass. Hadamard added to them, as follows. If f has finite order, meaning that for some positive constants A, B, and ρ it
satisfies a growth bound

$$
|f(z)| \leq A e^{B|z|^{\rho}} \quad \text { for all } z,
$$

then its roots are sparse; specifically, $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-s}$ converges if $s>\rho$. We will see that in consequence of this, letting $k=\lfloor\rho\rfloor$, the Weierstrass factorization improves to $f(z)=f_{k}(z)=e^{g(z)} z^{m} \prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)$, now with nth multiplicand $E_{k}\left(z / a_{n}\right)$ rather than $E_{n}\left(z / a_{n}\right)$. That is, the convergence factors all have equal length k according to ρ. In practical examples k is often small, e.g., 0 or 1 . A second consequence of the sparseness of the roots is that $g(z)$ is a polynomial of degree at most k, as we will also see.

Contents

Part 1. Weierstrass Factorization of an Entire Function

1. Estimate of $E_{k}-1$ 2
2. Infinite product convergence criterion 3
3. A non-vanishing analytic function is an exponential 4
4. Weierstrass product 5
Part 2. Hadamard Factorization of a Finite-Order Entire Function 5
5. Sparseness of roots: statement 5
6. Jensen's formula 5
7. Sparseness of roots: proof 6
8. Hadamard product, part 1 7
9. Lower bound 7
10. An entire function with polynomial-growth real part is a polynomial 8
11. Hadamard product, part 2 9
Part 3. Examples 10
12. The Euler-Riemann zeta function 10
13. The sine function 11

Part 1. Weierstrass Factorization of an Entire Function

$$
\text { 1. Estimate of } E_{k}-1
$$

Let k be a nonnegative integer. Recall the definition

$$
E_{k}(\zeta)=(1-\zeta) e^{\zeta+\frac{\zeta^{2}}{2}+\frac{\zeta^{3}}{3}+\cdots+\frac{\zeta^{k}}{k}} .
$$

For $k=0$ we have $E_{0}(\zeta)=1-\zeta$ and so $\left|E_{0}(\zeta)-1\right|=|\zeta|$ for all $\zeta \in \mathbb{C}$. We generalize this to an estimate of $\left|E_{k}(\zeta)-1\right|$ for any k, though now with a condition on ζ. The argument will show how the factor $e^{\zeta+\zeta^{2} / 2+\zeta^{3} / 3+\cdots+\zeta^{k} / k}$ brings $E_{k}(\zeta)$ closer to 1 for larger k when ζ is small.

Suppose that $|\zeta| \leq 1 / 2$; here the $1 / 2$ could be any positive $r<1$ with no essential change to the argument to follow, but we use $1 / 2$ for definiteness. Then

$$
1-\zeta=e^{\log (1-\zeta)}=e^{-\zeta-\frac{\zeta^{2}}{2}-\frac{\zeta^{3}}{3}-\cdots-\frac{\zeta^{k}}{k}-\frac{k^{k+1}}{k+1}-\cdots},
$$

and so, because $E_{k}(\zeta)=(1-\zeta) e^{\zeta+\zeta^{2} / 2+\zeta^{3} / 3+\cdots+\zeta^{k} / k}$,

$$
E_{k}(\zeta)=e^{w} \quad \text { where } w=w_{k}(\zeta)=-\frac{\zeta^{k+1}}{k+1}-\frac{\zeta^{k+2}}{k+2}-\cdots
$$

Because $|\zeta| \leq 1 / 2$,

$$
|w| \leq|\zeta|^{k+1} \sum_{j=0}^{\infty} \frac{1}{2^{j}}=2|\zeta|^{k+1}
$$

and in particular $|w| \leq 1$, even for $k=0$. So now,

$$
\left|E_{k}(\zeta)-1\right|=\left|e^{w}-1\right| \leq \sum_{j=1}^{\infty} \frac{|w|^{j}}{j!} \leq(e-1)|w| \quad \text { because }|w| \leq 1
$$

Together the previous two displays give our desired estimate,

$$
\begin{equation*}
\left|E_{k}(\zeta)-1\right| \leq 2(e-1)|\zeta|^{k+1} \quad \text { if }|\zeta| \leq 1 / 2 \tag{1}
\end{equation*}
$$

2. Infinite product convergence criterion

Let $\left\{z_{n}\right\}$ be a complex sequence, with $z_{n} \neq-1$ for all n. We show:

$$
\text { If } \sum_{n=1}^{\infty}\left|z_{n}\right| \text { converges then } \prod_{n=1}^{\infty}\left(1+z_{n}\right) \text { converges and can be rearranged. }
$$

Begin by noting that all but finitely many z_{n} satisfy $\left|z_{n}\right| \leq 1 / 2$. We freely work only with these z_{n}, for which

$$
\left|\log \left(1+z_{n}\right)\right|=\left|z_{n}\left(1-z_{n} / 2+z_{n}^{2} / 3+\cdots\right)\right| \leq 2\left|z_{n}\right|
$$

Thus the sequence $\left\{\sum_{n=1}^{N} \log \left(1+z_{n}\right)\right\}$ of partial sums of $\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)$ converges absolutely, and so it converges and can be rearranged. Consequently, because the complex exponential function is continuous, convergence and rearrangability also hold for the sequence

$$
\left\{e^{\sum_{n=1}^{N} \log \left(1+z_{n}\right)}\right\}=\left\{\prod_{n=1}^{N} e^{\log \left(1+z_{n}\right)}\right\}=\left\{\prod_{n=1}^{N}\left(1+z_{n}\right)\right\}
$$

This is the sequence of partial products of $\prod_{n=1}^{\infty}\left(1+z_{n}\right)$, and the convergence criterion is established. The argument has shown further that $\prod_{n=1}^{\infty}\left(1+z_{n}\right)$ is nonzero under the hypotheses on $\left\{z_{n}\right\}$, because it is $e^{\sum_{n=1}^{\infty} \log \left(1+z_{n}\right)}$.

Theorem 2.1. Let Ω be domain in \mathbb{C}. Let $\left\{\varphi_{n}\right\}$ be a sequence of analytic functions on Ω. Suppose that:

For every compact K in Ω
there is a summable sequence $\left\{x_{n}\right\}=\left\{x_{n}(K)\right\}$ in $\mathbb{R}_{\geq 0}$ such that $\left|\varphi_{n}(z)\right| \leq x_{n}$ for all n, uniformly over $z \in K$.
Then the product $p(z)=\prod_{n=1}^{\infty}\left(1+\varphi_{n}(z)\right)$ is analytic on Ω, and its roots are precisely the values $z \in \Omega$ such that $1+\varphi_{n}(z)=0$ for some n.

The partial products of $p(z)$ are analytic on Ω. For any compact K in Ω the bound $\left|\varphi_{n}(z)\right| \leq x_{n}$ for all n uniformly over K combines with the argument just given to establish that $p(z)$ converges uniformly on K. Because $p(z)$ on Ω has analytic partial products and converges uniformly on compacta it is analytic. The argument just given also establishes the last statement of the theorem.

Example 1. Let a sequence $\left\{a_{n}\right\}$ of nonzero complex numbers be given such that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$. Let $\varphi_{n}(z)=E_{n}\left(z / a_{n}\right)-1$ for each n. Given any compact K in \mathbb{C}, there exists $n_{o} \in \mathbb{Z}_{\geq 0}$ such that $\left|z / a_{n}\right| \leq 1 / 2$ for all $n \geq n_{o}$, uniformly over $z \in K$. Let $x_{n}=\sup _{z \in K}\left|\varphi_{n}(z)\right|$ for $n<n_{o}$, and let $x_{n}=(e-1) / 2^{n}$ for $n \geq n_{o}$. Thus, using (1) from the end of the previous section,

$$
\left|\varphi_{n}(z)\right|=\left|E_{n}\left(z / a_{n}\right)-1\right| \leq 2(e-1)\left|z / a_{n}\right|^{n+1} \leq x_{n} \quad \text { for all } n \geq n_{o} \text { and } z \in K
$$

and certainly $\left|\varphi_{n}(z)\right| \leq x_{n}$ for all $n<n_{o}$ and $z \in K$. This shows that the product $\prod_{n=1}^{\infty} E_{n}\left(z / a_{n}\right)$ is entire with roots $\left\{a_{n}\right\}$.

Example 2. Let a sequence $\left\{a_{n}\right\}$ of nonzero complex numbers be given such that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-k-1}$ converges for some nonnegative integer k. This is a stronger hypothesis than in the previous example. Let $\varphi_{n}(z)=E_{k}\left(z / a_{n}\right)-1$ for each n, here with E_{k} rather than E_{n} as in the previous example. Given any compact K in \mathbb{C}, there exists $c>0$ such that $2(e-1)|z|^{k+1} \leq c$ for all $z \in K$, and there exists $n_{o} \in \mathbb{Z}_{\geq 0}$ such that $\left|z / a_{n}\right| \leq 1 / 2$ for all $n \geq n_{o}$. Let $x_{n}=\sup _{z \in K}\left|\varphi_{n}(z)\right|$ for $n<n_{o}$, and let $x_{n}=c /\left|a_{n}\right|^{k+1}$ for $n \geq n_{o}$. Thus, again using (1),

$$
\left|\varphi_{n}(z)\right|=\left|E_{k}\left(z / a_{n}\right)-1\right| \leq 2(e-1)\left|z / a_{n}\right|^{k+1} \leq x_{n} \quad \text { for all } n \geq n_{o} \text { and } z \in K
$$

and certainly $\left|\varphi_{n}(z)\right| \leq x_{n}$ for all $n<n_{o}$ and $z \in K$. This shows that the product $\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)$ is entire with roots $\left\{a_{n}\right\}$. Especially, if $\sum_{n=1}^{\infty} 1 /\left|a_{n}\right|$ converges then this holds for $\prod_{n=1}^{\infty}\left(1-z / a_{n}\right)$. And if $\sum_{n=1}^{\infty} 1 /\left|a_{n}\right|^{2}$ converges then this holds for $\prod_{n=1}^{\infty}\left(1-z / a_{n}\right) e^{z / a_{n}}$.

Example 3. (This example is not necessary for the present writeup.) Let Ω be the right half plane $\operatorname{Re}(s)>1$, and let $\varphi_{n}(s)$ equal $\left(1-p^{-s}\right)^{-1}-1=\left(1-p^{-s}\right)^{-1} p^{-s}$ if n is a prime p, while φ_{n} is 0 if n is composite; the variable s rather than z is standard in this context. Let K be a compact subset of Ω. There exists some $\sigma>1$ such that $\operatorname{Re}(s) \geq \sigma$ on K. Let $\left\{x_{n}\right\}=\left\{2 n^{-\sigma}\right\}$. For any prime p, for all $s \in K$,

$$
\left|\varphi_{p}(s)\right|=\left|\left(1-p^{-s}\right)^{-1} p^{-s}\right| \leq 2 p^{-\sigma}=x_{p}
$$

and certainly $\left|\varphi_{n}(s)\right| \leq x_{n}$ for composite n and $s \in K$. This shows that the product $\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}$ is holomorphic on $\operatorname{Re}(s)>1$, with no reference to it equaling the sum $\sum_{n=1}^{\infty} n^{-s}$.

3. A NON-VANISHING ANALYTIC FUNCTION IS AN EXPONENTIAL

We show: If Ω is a simply connected region, and if $f: \Omega \longrightarrow \mathbb{C}$ is analytic and never vanishes, then f takes the form e^{g} for some analytic g on Ω.

The argument is constructive. Let a be a point of Ω, and take any value of $\log (f(a))$. Introduce

$$
g(z)=\log (f(a))+\int_{\zeta=a}^{z} \frac{f^{\prime}(\zeta) \mathrm{d} \zeta}{f(\zeta)}
$$

well defined because Ω is simply connected. Then $g^{\prime}(z)=f^{\prime}(z) / f(z)$, and so

$$
\left(f(z) e^{-g(z)}\right)^{\prime}=\left(f^{\prime}(z)-f(z) \cdot f^{\prime}(z) / f(z)\right) e^{-g(z)}=0
$$

Also $f(a) e^{-g(a)}=1$, and therefore $f=e^{g}$.
Especially, if the product $p(z)=z^{m} \prod_{n} E_{k_{n}}\left(z / a_{n}\right)$ is entire and has the same roots as $f(z)$, then $f(z)=e^{g(z)} p(z)$ for some entire g.

4. Weierstrass product

Let f be nonzero entire and have nonzero roots $\left\{a_{n}\right\}$. These roots satisfy the condition $\lim _{n}\left|a_{n}\right|=\infty$, and so the first example at the end of section 2 shows that the product $p(z)=z^{m} \prod_{n=1}^{\infty} E_{n}\left(z / a_{n}\right)$ converges to an entire function having the same roots as f. Section 3 therefore gives the Weierstrass factorization of f,

$$
f(z)=e^{g(z)} z^{m} \prod_{n=1}^{\infty} E_{n}\left(z / a_{n}\right)
$$

Here the convergence factor of E_{n} gets longer as n grows, and all that we know about g is that it is entire.

Part 2. Hadamard Factorization of a Finite-Order Entire Function

Let f be a nonzero entire function of finite order at most $\rho>0$, meaning that for some positive constants A and B it satisfies a growth bound

$$
|f(z)| \leq A e^{B|z|^{\rho}} \quad \text { for all } z
$$

Here the condition for all z can be replaced by for all z such that $|z|>R$ for some R. The actual order of f is the infimum of all such ρ; for example, if $|f(z)| \leq A e^{|z| \ln |z|}$ but $|f(z)| \not \leq A e^{|z|}$, or if $|f(z)| \leq p(|z|) e^{|z|}$ for some polynomial p but $|f(z)| \not \leq A e^{|z|}$, then still f has order 1 . If f has finite order ρ_{f} and similarly for g then $f g$ has finite order $\max \left\{\rho_{f}, \rho_{g}\right\}$.

Let f have order $m \in \mathbb{Z}_{\geq 0}$ at 0 . Let $\left\{a_{n}\right\}$ be the nonzero roots of f, with multiplicity, so that $\left|a_{n}\right| \rightarrow \infty$. For any $r \geq 0$, let $\mathfrak{n}(r)=\mathfrak{n}_{f}(r)$ denote the number of nonzero roots a_{n} of f such that $\left|a_{n}\right|<r$. The terminology $f, \rho, m,\left\{a_{n}\right\}, \mathfrak{n}$ is in effect for the rest of this writeup. We note that if f is entire with a root of order m at 0 , then f has order at most ρ if and only if f / z^{m} has order at most ρ.

5. Sparseness of roots: statement

To prepare for Hadamard's factorization theorem, our first main goal is as follows.
Theorem 5.1. Let $f, \rho,\left\{a_{n}\right\}$, and \mathfrak{n} be as just above. Then
(1) $\mathfrak{n}(r) \leq C|r|^{\rho}$ for all large enough r.
(2) $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-s}$ converges for all $s>\rho$.

The main result needed to prove the theorem is a variant of Jensen's formula, to be established next.

6. Jensen's formula

For $R>0$ and φ analytic on the closed complex ball \bar{B}_{R}, where $\varphi(0) \neq 0$ and $\varphi \neq 0$ on the boundary circle C_{R}, letting the finitely many roots of φ be denoted $\left\{a_{n}\right\}$ with repetition for multiplicity,

$$
\begin{equation*}
\ln |\varphi(0)|=\sum_{n} \ln \frac{\left|a_{n}\right|}{R}+\frac{1}{2 \pi} \int_{\theta=0}^{2 \pi} \ln \left|\varphi\left(R e^{i \theta}\right)\right| \mathrm{d} \theta . \tag{J1}
\end{equation*}
$$

The proof begins with two reductions:

- The formula for general R follows from the formula for $R=1$.
- The formula for a product $\varphi_{1} \varphi_{2}$ follows from the formula for φ_{1} and for φ_{2}.
- The decomposition $\varphi(z)=\varphi_{o}(z) \prod_{n}\left(z-a_{n}\right)$, where $\varphi_{o}(z)$ is the analytic extension of $\varphi(z) / \prod_{n}\left(z-a_{n}\right)$, reduces the formula for $R=1$ to two cases, where φ has no roots and where $\varphi(z)=z-a_{1}$.
If φ on \bar{B}_{1} has no roots then it takes the form $\varphi=e^{g}$, as discussed above. Let $g=u+i v$ with u and v harmonic conjugates, so that $|\varphi|=e^{u}$ and thus $\ln |\varphi|=u$. The mean value property of harmonic functions gives

$$
\ln |\varphi(0)|=u(0)=\frac{1}{2 \pi} \int_{\theta=0}^{2 \pi} u\left(e^{i \theta}\right) \mathrm{d} \theta=\frac{1}{2 \pi} \int_{\theta=0}^{2 \pi} \ln \left|\varphi\left(e^{i \theta}\right)\right| \mathrm{d} \theta
$$

If $\varphi(z)=z-a_{1}$ with $\left|a_{1}\right|<1$ then the desired formula reduces to

$$
\int_{\theta=0}^{2 \pi} \ln \left|e^{i \theta}-a_{1}\right| \mathrm{d} \theta=0
$$

Because $\ln \left|e^{i \theta}-a_{1}\right|=\ln \left|1-e^{-i \theta} a_{1}\right|$, and then we may replace θ by $-\theta$ in the integral, this is

$$
\int_{\theta=0}^{2 \pi} \ln \left|1-a_{1} e^{-i \theta}\right| \mathrm{d} \theta=0
$$

Similarly to the first case, the function $f(z)=1-a_{1} z$ takes the form e^{g} on \bar{B}_{1}, where $g=u+i v$, and so again the integral is a mean value integral for u. But this time $u(0)=0$ because $\varphi(0)=1$, and so the integral is 0 as desired.

A variant of Jensen's formula is as follows.

$$
\begin{equation*}
\ln |\varphi(0)|=-\int_{x=0}^{R} \mathfrak{n}_{\varphi}(x) \frac{\mathrm{d} x}{x}+\frac{1}{2 \pi} \int_{\theta=0}^{2 \pi} \ln \left|\varphi\left(R e^{i \theta}\right)\right| \mathrm{d} \theta \tag{J2}
\end{equation*}
$$

This follows from Jensen's formula (J1) if we can establish the equality

$$
-\int_{x=0}^{R} \mathfrak{n}(x) \frac{\mathrm{d} x}{x}=\sum_{n} \ln \frac{\left|a_{n}\right|}{R}
$$

in which $\mathfrak{n}=\mathfrak{n}_{\varphi}$. This equality reduces to the case $R=1$. Define $\eta_{n}(x)$ to be 1 if $x>\left|a_{n}\right|$ and 0 otherwise, so that $\mathfrak{n}(x)=\sum_{n} \eta_{n}(x)$, and compute,

$$
-\int_{x=0}^{1} \mathfrak{n}(x) \frac{\mathrm{d} x}{x}=-\sum_{n} \int_{x=0}^{1} \eta_{n}(x) \frac{\mathrm{d} x}{x}=-\sum_{n} \int_{x=\left|a_{n}\right|}^{1} \frac{\mathrm{~d} x}{x}=\sum_{n} \ln \left|a_{n}\right|
$$

7. Sparseness of roots: proof

We prove part (1) of Theorem 5.1. Partially reiterating the theorem's hypotheses, the nonzero entire function f has finite order at most ρ and root-counting function \mathfrak{n}, and we want to show that

$$
\mathfrak{n}(r) \leq C r^{\rho} \quad \text { for some } C \in \mathbb{R}_{>0} \text { and all large enough } r .
$$

It suffices to prove this in the case $f(0) \neq 0$. For any $r \in \mathbb{R}_{>0}$, let $R=2 r$, so that $\int_{r}^{R} \mathrm{~d} x / x=\ln 2$. Then, using the variant Jensen's formula (J2) for the last step in the next computation,

$$
\mathfrak{n}(r) \ln 2=\mathfrak{n}(r) \int_{r}^{R} \frac{\mathrm{~d} x}{x} \leq \int_{0}^{R} \mathfrak{n}(x) \frac{\mathrm{d} x}{x}=\frac{1}{2 \pi} \int_{\theta=0}^{2 \pi} \ln \left|f\left(R e^{i \theta}\right)\right| \mathrm{d} \theta-\ln |f(0)| .
$$

Consequently,

$$
\mathfrak{n}(r) \leq C_{1} r^{\rho}+C_{2} \quad \text { for some } C_{1} \in \mathbb{R}_{>0} \text { and } C_{2} \in \mathbb{R}, \text { for all } r \in \mathbb{R}_{>0},
$$

and the result follows.
We prove part (2) of Theorem 5.1. Recall that the nonzero roots of f are $\left\{a_{n}\right\}$. We show that $\sum_{n}\left|a_{n}\right|^{-s}$ converges if $s>\rho$. Indeed, we now have $\mathfrak{n}(r) \leq C r^{\rho}$ for all $r \geq 2^{j_{o}}$ for some nonnegative integer j_{o}. Compute,

$$
\sum_{\left|a_{n}\right| \geq 2^{j o}}\left|a_{n}\right|^{-s}=\sum_{j=j_{o}}^{\infty} \sum_{2^{j} \leq\left|a_{n}\right|<2^{j+1}}\left|a_{n}\right|^{-s} \leq \sum_{j=j_{o}}^{\infty} \mathfrak{n}\left(2^{j+1}\right) 2^{-j s} \leq C \sum_{j=j_{o}}^{\infty} 2^{(j+1) \rho-j s}
$$

The last sum is $2^{\rho} \sum_{j=j_{o}}^{\infty}\left(2^{\rho-s}\right)^{j}$, which converges because $s>\rho$.

8. Hadamard product, part 1

Let f be nonzero entire of finite order at most $\rho>0$. Consider the nonnegative integer

$$
k=\lfloor\rho\rfloor,
$$

so that $k \leq \rho<k+1$. As just shown, the nonzero roots $\left\{a_{n}\right\}$ are such that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-k-1}$ converges, and so the second example at the end of section 2 shows that the product $z^{m} \prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)$ converges to an entire function having the same roots as f. Section 3 therefore gives the Hadamard factorization of f,

$$
f(z)=e^{g(z)} z^{m} \prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)
$$

Here all the terms $E_{k}\left(z / a_{n}\right)$ have convergence factors of the same length. The remaining work is to analyze $g(z)$. This is more technical.

9. LOWER BOUND

Freely ignoring any root of f at 0 , to show that g is a low degree polynomial we must bound the quotient $f(z) / \prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)$ from above, and this requires bounding the product $\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)$ from below.

Again with f having finite order at most ρ and with $k=\lfloor\rho\rfloor$, consider any s such that $\rho<s<k+1$. Thus $s>k$. Consider any $z \in \mathbb{C}$. We want to show that subject to a condition on z to be specified, $\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)$ is bounded from below as follows,

$$
\left|\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)\right| \geq e^{-c|z|^{s}}
$$

For the infinitely many values n such that $\left|z / a_{n}\right| \leq 1 / 2$, we have shown in section 1 that $E_{k}\left(z / a_{n}\right)=e^{w}$ where $w=-\sum_{j \geq k+1}\left(z / a_{n}\right)^{j} / j$ and so $|w| \leq 2\left|z / a_{n}\right|^{k+1}$. Because $\left|e^{w}\right| \geq e^{-|w|}$,

$$
\left|E_{k}\left(z / a_{n}\right)\right| \geq e^{-2\left|z / a_{n}\right|^{k+1}}=e^{-2\left|z / a_{n}\right|^{k+1-s}\left|z / a_{n}\right|^{s}} \geq e^{-(1 / 2)^{k-s}|z|^{s} /\left|a_{n}\right|^{s}}
$$

Thus, because $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-s}$ converges,

$$
\left|\prod_{n:\left|z / a_{n}\right| \leq 1 / 2} E_{k}\left(z / a_{n}\right)\right| \geq e^{-c|z|^{s}}
$$

with $c=2^{s-k} \sum_{n=1}^{\infty}\left|a_{n}\right|^{-s}$.
For the finite many values n such that $\left|z / a_{n}\right|>1 / 2$,

$$
\left|E_{k}\left(z / a_{n}\right)\right|=\left|1-z / a_{n}\right|\left|e^{\sum_{j=1}^{k}\left(z / a_{n}\right)^{j} / j}\right|,
$$

and, again because $\left|e^{w}\right| \geq e^{-|w|}$, and noting that $\left|2 z / a_{n}\right| \geq 1$, the exponential term satisfies

$$
\left|e^{\sum_{j=1}^{k}\left(z / a_{n}\right)^{j} / j}\right| \geq e^{-\sum_{j=1}^{k}\left|2 z / a_{n}\right|^{j} /\left(2^{j} j\right) \mid} \geq e^{-c|z|^{k}} \geq e^{-c|z|^{s}}
$$

with $c=k 2^{k} / a_{1}^{k}$. So in order to show the condition $\left|\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)\right| \geq e^{-c|z|^{s}}$, only the non-exponential terms remain, and we need to show that

$$
\prod_{n:\left|z / a_{n}\right|>1 / 2}\left|1-z / a_{n}\right| \geq e^{-c|z|^{s}}
$$

However, this is not guaranteed until we add a condition on z. For each positive integer n, let B_{n} denote the open ball about a_{n} of radius $\left|a_{n}\right|^{-k-1}$. We stipulate that z lie outside $\bigcup_{n} B_{n}$. For such z,

$$
\left|1-z / a_{n}\right|=\left|z-a_{n}\right| /\left|a_{n}\right| \geq\left|a_{n}\right|^{-k-2} \geq(2|z|)^{-k-2}
$$

Take $\varepsilon>0$ such that $s-\varepsilon>\rho$, and thus $\mathfrak{n}(2|z|) \leq c|z|^{s-\varepsilon}$ for large z. Thus,

$$
\prod_{n:\left|z / a_{n}\right|>1 / 2}\left|1-z / a_{n}\right| \geq(2|z|)^{-(k+2) \mathfrak{n}(2|z|)} \geq(2|z|)^{-c|z|^{s-\varepsilon}}
$$

and the desired result follows,

$$
\prod_{n:\left|z / a_{n}\right|>1 / 2}\left|1-z / a_{n}\right| \geq e^{-c|z|^{s-\varepsilon} \ln (2|z|)} \geq e^{-c|z|^{s}}
$$

For each positive integer n, again let B_{n} denote the open ball about a_{n} of radius $\left|a_{n}\right|^{-k-1}$, let A_{n} denote the open annulus generated by rotating B_{n} around 0 , and let I_{n} denote the intersection of A_{n} with $\mathbb{R}_{>0}$. For all large integers N, the interval $[N, N+1)$ contains a point r disjoint from $\bigcup_{n} I_{n}$, and so the circle C_{r} is disjoint from $\bigcup_{n} A_{n}$, therefore disjoint from $\bigcup_{n} B_{n}$. Thus there is a sequence of positive values r that goes to ∞ such that each circle C_{r} is disjoint from $\bigcup_{n} B_{n}$.

10. An entire function with polynomial-growth real part is a POLYNOMIAL

We show: Let $g=u+i v$ be entire and satisfy $u\left(r e^{i \theta}\right) \leq C r^{s}$ for a sequence of positive values r that goes to ∞, with $s \geq 0$. Then g is a polynomial of degree at most s.

Because u is bounded only from one side, as compared to a bound on $|u|$, much less on $|g|$, the proof is more than simply Cauchy's bound. Take any r as just described and any integer $n>s$. Cauchy's formula gives

$$
\frac{g^{(n)}(0)}{n!}=\frac{1}{2 \pi i} \int_{\theta=0}^{2 \pi} \frac{g\left(r e^{i \theta}\right)}{\left(r e^{i \theta}\right)^{n+1}} \mathrm{~d}\left(r e^{i \theta}\right)
$$

which is to say,

$$
\frac{g^{(n)}(0)}{n!}=\frac{1}{2 \pi r^{n}} \int_{\theta=0}^{2 \pi} g\left(r e^{i \theta}\right) e^{-i n \theta} \mathrm{~d} \theta
$$

Also, Cauchy's theorem gives $\int_{\theta=0}^{2 \pi} g\left(r e^{i \theta}\right) e^{i(n-1) \theta} \mathrm{d}\left(r e^{i \theta}\right)=0$, and it follows that $\int_{\theta=0}^{2 \pi} g\left(r e^{i \theta}\right) e^{i n \theta} \mathrm{~d} \theta=0$, from which by complex conjugation,

$$
0=\frac{1}{2 \pi r^{n}} \int_{\theta=0}^{2 \pi} \bar{g}\left(r e^{i \theta}\right) e^{-i n \theta} \mathrm{~d} \theta
$$

The previous two displayed equations combine to give, recalling that $g=u+i v$ and so $g+\bar{g}=2 u$,

$$
\frac{g^{(n)}(0)}{n!}=\frac{1}{\pi r^{n}} \int_{\theta=0}^{2 \pi} u\left(r e^{i \theta}\right) e^{-i n \theta} \mathrm{~d} \theta
$$

or, recalling that $u\left(r e^{i \theta}\right) \leq C r^{s}$ and noting that because $C r^{s}$ is independent of θ and $\int_{\theta=0}^{2 \pi} e^{-i n \theta} \mathrm{~d} \theta=0$,

$$
-\frac{g^{(n)}(0)}{n!}=\frac{1}{\pi r^{n}} \int_{\theta=0}^{2 \pi}\left(C r^{s}-u\left(r e^{i \theta}\right)\right) e^{-i n \theta} \mathrm{~d} \theta
$$

from which, because $C r^{s}-u\left(r e^{i \theta}\right) \geq 0$ for all θ,

$$
\frac{\left|g^{(n)}(0)\right|}{n!} \leq \frac{1}{\pi r^{n}} \int_{\theta=0}^{2 \pi}\left(C r^{s}-u\left(r e^{i \theta}\right)\right) \mathrm{d} \theta=2 C r^{s-n}-2 u(0) r^{-n}
$$

Let r grow to show that $g^{(n)}(0)=0$. Thus the entire function

$$
g(z)=\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^{n} \quad \text { for all } z \in \mathbb{C}
$$

is a polynomial of degree at most s, as claimed.

11. Hadamard product, part 2

Our nonzero entire function f has finite order at most ρ, has a root of order $m \geq 0$ at 0 , and has nonzero roots $\left\{a_{n}\right\}$. As before, let

$$
k=\lfloor\rho\rfloor,
$$

and consider any s such that

$$
\rho<s<k+1
$$

Already we have

$$
f(z)=e^{g(z)} z^{m} \prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)
$$

Now we show that g is a polynomial of degree at most k.
For a sequence of positive values r that goes to ∞, we have

$$
\left|\prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)\right| \geq e^{-c|z|^{s}} \quad \text { if }|z|=r
$$

from which certainly

$$
\left|z^{m} \prod_{n=1}^{\infty} E_{k}\left(z / a_{n}\right)\right| \geq e^{-c|z|^{s}} \quad \text { if }|z|=r
$$

Consequently, with $g=u+i v$, because also $|f(z)| \leq A e^{B|z|^{\rho}}$,

$$
e^{u(z)}=\left|e^{g(z)}\right| \leq A e^{B|z|^{\rho}+c|z|^{s}} \leq e^{C|z|^{s}} \quad \text { if }|z|=r,
$$

which is to say,

$$
u\left(r e^{i \theta}\right) \leq C r^{s}
$$

As just shown, $g(z)$ is a polynomial of degree at most s, hence degree at most $\lfloor s\rfloor$, which is to say degree at most k.

Part 3. Examples

12. The Euler-Riemann zeta function

We establish Hadamard's product formula

$$
(s-1) \zeta(s)=e^{a+b s} \prod_{n \geq 1}\left(1+\frac{s}{2 n}\right) e^{-s / 2 n} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho}, \quad s \in \mathbb{C}
$$

Here ρ runs through the nontrivial zeros of the zeta function, those lying in the critical strip $0<\operatorname{Re}(s)<1$. Although the values of a and b aren't particularly important, they are $a=-\log 2$ and $b=\zeta^{\prime}(0) / \zeta(0)-1=\log 2 \pi-1$.

The function

$$
Z_{\text {entire }}(s)=s(1-s) \pi^{-s / 2} \Gamma(s / 2) \zeta(s), \quad s \in \mathbb{C}
$$

extends from an analytic function on the right half plane $\operatorname{Re}(s)>1$ to an entire function, and the extension is symmetric about the vertical line $\operatorname{Re}(s)=1 / 2$, i.e., it is invariant under the replacing s by $1-s$.

Let $s=\sigma+i t$. For $\sigma \geq 1 / 2$, we have upper bounds of the four constituents s, $\pi^{-s / 2}, \Gamma(s)$, and $(1-s) \zeta(s)$ of $Z_{\text {entire }}(s)$, as follows:

- $|s| \leq e^{|s|}$ for large s.
- $\left|\pi^{-s / 2}\right|=\pi^{-\sigma / 2} \leq \pi^{-1 / 4}$.
- $|\Gamma(s / 2)| \leq \Gamma(\sigma / 2)$, and by Stirling's formula, this is asymptotically at most $A e^{\sigma \ln \sigma}$, in turn at most $A e^{|s| \ln |s|}$.
- Some analysis shows that after extending $\zeta(s)-1 /(s-1)$ leftward from $\sigma>1$ to $\sigma>0$, we have $|\zeta(s)-1 /(s-1)| \leq \zeta(3 / 2)|s|$ for $\sigma \geq 1 / 2$, and so $|(1-s) \zeta(s)| \leq 1+\zeta(3 / 2)|s|$ for $\sigma \geq 1 / 2$; from this, certainly $|(1-s) \zeta(s)| \leq$ $e^{|s|}$ for large s with $\operatorname{Re}(s) \geq 1 / 2$.
Altogether these give the upper bound

$$
\left|Z_{\text {entire }}(s)\right| \leq A e^{B|s| \ln |s|}, \quad \operatorname{Re}(s) \geq 1 / 2
$$

And because $|1-s| \sim|s|$, the symmetry of $Z_{\text {entire }}(s)$ gives

$$
\left|Z_{\text {entire }}(s)\right| \leq A e^{B|s| \ln |s|}, \quad \operatorname{Re}(s)<1 / 2
$$

Altogether $Z_{\text {entire }}(s)$ has order at most 1, and therefore it has a Hadamard product expansion

$$
s(1-s) \pi^{-s / 2} \Gamma(s / 2) \zeta(s)=e^{a+b s} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho}, \quad s \in \mathbb{C}
$$

But also the reciprocal gamma function has a well known product expansion, in which γ denotes the Euler-Mascheroni constant,

$$
1 / \Gamma(s)=e^{\gamma s} s \prod_{n \geq 1}\left(1+\frac{s}{n}\right) e^{-s / n}, \quad s \in \mathbb{C}
$$

Such a product expression, though with $e^{a^{\prime}+b^{\prime} s}$ rather than $e^{\gamma s}$, follows from the estimate $|1 / \Gamma(s)| \leq A e^{B|s| \ln |s|}$ (see Stein and Shakarchi, Theorem 6.1.6, page 165). Divide the penultimate display by $-s \pi^{-s / 2} \Gamma(s / 2)$ and use the previous display to get, with new a and b, the claimed result,

$$
(s-1) \zeta(s)=e^{a+b s} \prod_{n \geq 1}\left(1+\frac{s}{2 n}\right) e^{-s / 2 n} \prod_{\rho}\left(1-\frac{s}{\rho}\right) e^{s / \rho}, \quad s \in \mathbb{C}
$$

13. The sine function

One readily shows that the sine function has order 1 , and so for some $b \in \mathbb{C}$,

$$
\sin (\pi z)=e^{b z} \pi z \prod_{n \geq 1}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

We show that $b=0$. Indeed, write the previous display as

$$
\frac{\sin (\pi z)}{\pi z}=e^{b z} \prod_{n \geq 1}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

with the left side continued analytically to 1 at $z=0$. This says that for small z,

$$
1+o(z)=(1+b z+o(z))(1+o(z))=1+b z+o(z)
$$

from which $b=0$. As an exercise, tracking z^{2}-terms as well shows that $\zeta(2)=\pi^{2} / 6$. In fact, an elementary formula for $\zeta(2 d)$ where $d=1,2,3, \ldots$ can be extracted from the Taylor series expansion and the product expansion of $\sin (\pi z) /(\pi z)$. This is unsurprising in light of a well known method to obtain $\zeta(2 d)$ from the sum expansion of $\pi \cot (\pi z)$, the logarithmic derivative of $\sin (\pi z)$.

