THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN
ENTIRE FUNCTION

These notes are drawn closely from chapter 5 of Princeton Lectures in Anal-
ysis II: Complex Analysis by Stein and Shakarchi.

Let f: C — C be nonzero and entire, with infinitely many roots, vanishing to
order m > 0 at 0. The nonzero roots of f, with repetition for multiplicity, form a
sequence {a,} such that lim, |a,| = co. For an initial product form that attempts
to factor f, first define

EO(C) =1- Ca
an entire function of ¢ that vanishes only for { = 1 and goes to 1 as { goes to 0.

Thus Fy(z/ay,) vanishes only at z = a,,, and for fixed z it goes to 1 as n goes to co.
Then define

o0 o0
po(z) = 2™ H Ey(z/a,) = 2" H(l —z/ay).
n=1 n=1
However, this product need not even converge, much less converge to an entire
function that matches the roots of f. We will see that a sufficient condition for
such convergence is that > - 1/|a,| converges, but this condition fails unless
the a,, are sparse enough.

Recall that > 72, %; = In((1—¢)"!) and thus e=i=1 & = (1—-¢)~*tfor |[¢] < 1.
With this in mind, for any nonnegative integer k generalize Ej to
¢ ¢ ¢
Bip(Q) = (1= Qe 275w,

again an entire function of ¢ that vanishes only for { = 1 and goes to 1 more quickly
for larger k as ¢ goes to 0; this rate of convergence will be quantified below. Again
Ei(z/a,) vanishes only at z = a,, and so for any nonnegative integer sequence
{k,} the expression

o) [o%¢) e (Z/an)2 (z/an)k"
Piray(2) =2 H By, (z/an) = 2" | | (1—=z/an)e fant =gtk
n=1 n=1

might be an entire function having the roots as f. This py, } improves on pg
because for large enough n to make z/a, small, its multiplicands Ej, (z/a,) can
be made as close to 1 as desired by choosing larger k,, and we will see that in
particular the sequence {k,} = {n} makes py, ; converge to an entire function
with the same roots as f.

Once we know that some py;, ) is entire with the same roots as f, their quotient
f/P{k, defines an entire function that never vanishes. As will be reviewed, the
quotient therefore takes the form e9 with g entire. Thus the factorization of f is

oo
f(z) =e9)zm H E.(z/ay).
n=1
So far, these ideas are due to Weierstrass. Hadamard added to them, as follows.
If f has finite order, meaning that for some positive constants A, B, and p it
1
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satisfies a growth bound
If(2)] < A4eBF" for all 2,

then its roots are sparse; specifically, > - | |a,| ™% converges if s > p. We will see
that in consequence of this, letting k = |p|, the Weierstrass factorization improves
to f(z) = fu(z) = 92 [[22, Ex(2/ay), now with nth multiplicand Ej(z/ay,,)
rather than FE,(z/a,). That is, the convergence factors all have equal length k
according to p. In practical examples k is often small, e.g., 0 or 1. A second
consequence of the sparseness of the roots is that g(z) is a polynomial of degree at
most k, as we will also see.
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Part 1. Weierstrass Factorization of an Entire Function
1. ESTIMATE OF E — 1

Let k£ be a nonnegative integer. Recall the definition
S ¢k
E(¢) = (1- Qe T+ -+,

For k = 0 we have FEp(¢) = 1 — ¢ and so |Ep(¢) — 1| = [¢] for all { € C. We
generalize this to an estimate of |Ey () — 1| for any k, though now with a condition
on ¢. The argument will show how the factor e¢+¢”/2+¢*/3+4¢"/k 1ypingg EL(C)
closer to 1 for larger k when ( is small.

Suppose that |¢] < 1/2; here the 1/2 could be any positive r < 1 with no essential
change to the argument to follow, but we use 1/2 for definiteness. Then

<2 <3 Ck} Ck}+1
1—¢=eloel=0 = =5 =5 Tk T hrL
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and so, because E(¢) = (1 — C)eC‘FCZ’/2'1%3/3-1----Jrc“’“/k7
k1 ckt2
T k1 T k+2

Ex(¢) =e" where w =wg(¢) =
Because [¢| < 1/2,

— 1
ul < I D 55 =20l
J:

and in particular |w| < 1, even for k = 0. So now,
o Jwl?
|Ep(CQ) =1 =¥ = 1| < g — < (e—1)|w| because [w| < 1.
- J-
Jj=1

Together the previous two displays give our desired estimate,

(1) |Ee(¢) — 1 < 2(e — 1)[¢IFif [¢] < 1/2.

2. INFINITE PRODUCT CONVERGENCE CRITERION

Let {z,} be a complex sequence, with z, # —1 for all n. We show:

oo o0
If Z |zn| converges then H(l + zp,) converges and can be rearranged.
n=1 n=1
Begin by noting that all but finitely many z, satisfy |z,| < 1/2. We freely work
only with these z,, for which

[log(1 4 2n)| = |20 (1 — 2n/2 + 20 /3 + - -+ )| < 2]zn].

Thus the sequence {Zi\;l log(1 + zn)} of partial sums of >~ log(1 + z,) con-
verges absolutely, and so it converges and can be rearranged. Consequently, because
the complex exponential function is continuous, convergence and rearrangability
also hold for the sequence

N N
{ezﬁzllog(uzn)} _ {H elog(1+zn)} - {H(l + Zn)} .
n=1

n=1
This is the sequence of partial products of [[ >~ (1 + z,), and the convergence
criterion is established. The argument has shown further that [[)2 (1 + 2,) is
nonzero under the hypotheses on {z,}, because it is e2=n=1108(1+2n),

Theorem 2.1. Let Q be domain in C. Let {p,} be a sequence of analytic functions
on Q. Suppose that:

For every compact K in Q
there is a summable sequence {x,} = {x,(K)} in R>o such that
lon(2)| < @y for all n, uniformly over z € K.

Then the product p(z) = T[]~ (1 + ¢n(2)) is analytic on Q, and its roots are
precisely the values z € Q such that 1 + ¢, (2) = 0 for some n.

The partial products of p(z) are analytic on . For any compact K in Q the
bound |, (2)] < @, for all n uniformly over K combines with the argument just
given to establish that p(z) converges uniformly on K. Because p(z) on Q has
analytic partial products and converges uniformly on compacta it is analytic. The
argument just given also establishes the last statement of the theorem.
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Example 1. Let a sequence {a,} of nonzero complex numbers be given such
that lim,,_,o |an| = 0. Let v, (2) = Ep(2/a,)—1 for each n. Given any compact K
in C, there exists n, € Z>o such that |z/a,| < 1/2 for all n > n,, uniformly over
z € K. Let &, = sup,cg |¢n(2)| for n < n,, and let z,, = (e — 1)/2™ for n > n,.
Thus, using (1) from the end of the previous section,

lon(2)| = |En(2/an) — 1] < 2(e — 1)|z/a,|" " <z, foralln>n,andz € K,

and certainly |¢,(2)| < @, for all n < n, and z € K. This shows that the product
[, En(z/ay) is entire with roots {a,}.

Example 2. Let a sequence {a,} of nonzero complex numbers be given such
that 220:1 la,|~*~1 converges for some nonnegative integer k. This is a stronger
hypothesis than in the previous example. Let ¢,(z) = Ex(z/a,) — 1 for each n,
here with Ej rather than F, as in the previous example. Given any compact K
in C, there exists ¢ > 0 such that 2(e — 1)|z|¥T! < ¢ for all z € K, and there
exists n, € Z>o such that |z/a,| < 1/2 for all n > n,. Let x, = sup,cg |¢n(2)]
for n < n,, and let z,, = ¢/|a,|**! for n > n,. Thus, again using (1),

lon(2)| = |Ex(z/an) — 1] < 2(e — 1)|2/a, [T <z, forall n >n, and 2z € K,

and certainly |¢,(2)] < @, for all n < n, and z € K. This shows that the product
[, Ex(z/ay) is entire with roots {a,}. Especially, if Y | 1/|a,| converges then
this holds for []72,(1 — z/a,). And if Y77, 1/|a,|* converges then this holds for
[T, (- z/a)e*/ .

Example 3. (This example is not necessary for the present writeup.) Let £ be
the right half plane Re(s) > 1, and let ¢,,(s) equal (1—p~*)"t—1= (1—-p=%)~"!p~*
if n is a prime p, while ¢, is 0 if n is composite; the variable s rather than z is
standard in this context. Let K be a compact subset of ). There exists some o > 1
such that Re(s) > o on K. Let {x,} = {2n~?}. For any prime p, for all s € K,

()| = (1 —p™) " Tp [ <277 =y,
and certainly |¢,(s)| < x,, for composite n and s € K. This shows that the product
¢(s) = I[,(1—p~*)~" is holomorphic on Re(s) > 1, with no reference to it equaling
the sum y 7 n*.

3. A NON-VANISHING ANALYTIC FUNCTION IS AN EXPONENTIAL

We show: If Q) is a simply connected region, and if f : Q@ — C is analytic and
never vanishes, then f takes the form e9 for some analytic g on €.

The argument is constructive. Let a be a point of {2, and take any value
of log(f(a)). Introduce

oty s [ O
9(z) = log(f(a)) + . 1O

well defined because € is simply connected. Then ¢'(z) = f'(2)/f(z), and so

(F(2)e™@) = (F'(2) = £(2) - ' (2)/ F(2))e ") = 0.

Also f(a)e™9(® =1, and therefore f = 9.
Especially, if the product p(z) = 2™ [],, Ek, (2/ax) is entire and has the same
roots as f(z), then f(z) = e9*)p(z) for some entire g.
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4. WEIERSTRASS PRODUCT

Let f be nonzero entire and have nonzero roots {a,}. These roots satisfy the
condition lim, |a,| = oo, and so the first example at the end of section 2 shows
that the product p(z) = 2™ [~ E,(z/ay) converges to an entire function having
the same roots as f. Section 3 therefore gives the Weierstrass factorization of f,

e}
f(Z) = eg(z)zm H En(z/an)
n=1
Here the convergence factor of E,, gets longer as n grows, and all that we know
about g is that it is entire.

Part 2. Hadamard Factorization of a Finite-Order Entire Function

Let f be a nonzero entire function of finite order at most p > 0, meaning that
for some positive constants A and B it satisfies a growth bound

If(2)] < A4eB" for all 2.

Here the condition for all z can be replaced by for all z such that |z| > R for some R.
The actual order of f is the infimum of all such p; for example, if |f(z)| < Ael*!™m 17l
but |f(z)| £ Ael*l, or if |f(2)| < p(|z|)e!*! for some polynomial p but |f(z)| £ Ael?],
then still f has order 1. If f has finite order p; and similarly for g then fg has
finite order max{py, py}-

Let f have order m € Zxo at 0. Let {a,} be the nonzero roots of f, with
multiplicity, so that |a,| — co. For any r > 0, let n(r) = ns(r) denote the number
of nonzero roots a,, of f such that |a,| < r. The terminology f, p, m, {a,}, nisin
effect for the rest of this writeup. We note that if f is entire with a root of order m
at 0, then f has order at most p if and only if f/2™ has order at most p.

5. SPARSENESS OF ROOTS: STATEMENT
To prepare for Hadamard’s factorization theorem, our first main goal is as follows.

Theorem 5.1. Let f, p, {an}, and n be as just above. Then
(1) n(r) < C|r|P for all large enough r.
(2) 30 lan|™* converges for all s > p.

The main result needed to prove the theorem is a variant of Jensen’s formula,
to be established next.

6. JENSEN’S FORMULA

For R > 0 and ¢ analytic on the closed complex ball Br, where p(0) # 0
and ¢ # 0 on the boundary circle Cg, letting the finitely many roots of ¢ be
denoted {a,,} with repetition for multiplicity,

2

|an| 1 i0
(J1) In |(0)] = TZLIHT + 5o - In |o(Re')| 6.

The proof begins with two reductions:

e The formula for general R follows from the formula for R = 1.
e The formula for a product ;s follows from the formula for ¢; and for ¢s.
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e The decomposition ¢(z) = @,(2)[],(z — an), where ,(z) is the analytic
extension of ¢(2)/[], (2 — an), reduces the formula for R = 1 to two cases,
where ¢ has no roots and where ¢(z) = z — a;.
If ¢ on B; has no roots then it takes the form ¢ = e9, as discussed above. Let
g = u+ v with u and v harmonic conjugates, so that || = e* and thus In|p| = u.
The mean value property of harmonic functions gives

1 2m ) 1 27 )

In | (0)] = u(0) = 7/ w(e®) o = 7/ n | (e%)] do.
2T 6=0 21 0

If p(2) = z — ay with |a;| < 1 then the desired formula reduces to

2m
/ In|e® —a;|dd = 0.
0=0

Because In|e® — a;| = In|1 — ™%

integral, this is

ay|, and then we may replace § by —6 in the

27
/ In|l—ae " do=0.
6=0

Similarly to the first case, the function f(z) = 1 — a;2 takes the form e9 on By,
where g = u + iv, and so again the integral is a mean value integral for u. But this
time 4(0) = 0 because ¢(0) = 1, and so the integral is 0 as desired.

A variant of Jensen’s formula is as follows.
R dx 1 2 0
(J2) In |o(0)] = —/ @)+ L [T mp(Re)) o
z=0 €T 27 Jo—o
This follows from Jensen’s formula (J1) if we can establish the equality

R
dx |an]
_ =N 2
/Ion(l’)x En D,

in which n = n,,. This equality reduces to the case R = 1. Define 7, (z) to be 1 if
x > |a,| and 0 otherwise, so that n(z) = >, 7,(z), and compute,

. dx /1 dx /1 dx
— nr)— = — Mn(T)— = — —_— = lnan.
TS i DY bt 37 - B

7. SPARSENESS OF ROOTS: PROOF

We prove part (1) of Theorem 5.1. Partially reiterating the theorem’s hypotheses,
the nonzero entire function f has finite order at most p and root-counting function n,
and we want to show that

n(r) < Cr” for some C € Rsq and all large enough r.

It suffices to prove this in the case f(0) # 0. For any r € Rsq, let R = 2r, so that

fTR dz/x =1n2. Then, using the variant Jensen’s formula (J2) for the last step in
the next computation,

R R 27
dx dz 1 -
= — << — 0 _ )
n(r)In2 n(r)/T . _/0 n(x) i =l In|f(Re")|dd — In|f(0)]
Consequently,

n(r) < Cir? + Cy  for some C7 € Ry and Cs € R, for all r € R,
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and the result follows.

We prove part (2) of Theorem 5.1. Recall that the nonzero roots of f are {a,}.
We show that > |a,|™® converges if s > p. Indeed, we now have n(r) < Cr? for
all r > 27 for some nonnegative integer j,. Compute,

Z lan|™® = i Z lan| ™% < i n(2th2 s < C i 9(i+1)p—js

lan|>290 J=jo 29 <|an|<2i+1 J=Jo i=jo

The last sum is 27 372 . (2°7°)7, which converges because s > p.

8. HADAMARD PRODUCT, PART 1

Let f be nonzero entire of finite order at most p > 0. Consider the nonnegative
integer
k= lpl,
so that & < p < k+ 1. As just shown, the nonzero roots {a,} are such that
S22 lan| %71 converges, and so the second example at the end of section 2 shows
that the product 2™ ][], Ex(z/a,) converges to an entire function having the
same roots as f. Section 3 therefore gives the Hadamard factorization of f,

oo
f(z) =e9)zm H Ey(z/ay).
n=1
Here all the terms Ey(z/a,) have convergence factors of the same length. The
remaining work is to analyze g(z). This is more technical.

9. LOWER BOUND

Freely ignoring any root of f at 0, to show that g is a low degree polynomial
we must bound the quotient f(z)/[[,~, Ex(z/ay,) from above, and this requires
bounding the product [°, Ex(z/a,) from below.

Again with f having finite order at most p and with k = |p], consider any s
such that p < s < k+ 1. Thus s > k. Consider any z € C. We want to show that
subject to a condition on z to be specified, [[2; Ex(z/ay) is bounded from below

as follows,

> e—clzl”,

H Ei(z/ay)
n=1

For the infinitely many values n such that |z/a,| < 1/2, we have shown in sec-
tion 1 that Ey(2/an) = e where w = — 3" -, 1 (2/an)? /j and so |w| < 2|z/a,[*+1.

Because |e®| > e~ I,

(2 an)| > e 2e/an ™ gm2lz/an 7 e anl 5 o=(1/2)F 2 ol

Thus, because Y| |an|™* converges,

H Ek(z/an) > e—c\z‘s

nilz/an|<1/2

with ¢ = 25773 | |a,|~*.
For the finite many values n such that |z/a,| > 1/2,

B (2/an)| = |1 — z/ay| [eZi=1(/an) /3|
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and, again because |e*| > e~ |l and noting that [2z/a,| > 1, the exponential term
satisfies

(e Shm /a3 > o= Tici 122/l /@] 5 gmelel* > omelzl’

with ¢ = k2¥/a¥. So in order to show the condition |[[~, Ex(z/a,)| > e ",
only the non-exponential terms remain, and we need to show that

H 11— z/an| > e ",
n:z/an|[>1/2
However, this is not guaranteed until we add a condition on z. For each positive
integer n, let B,, denote the open ball about a, of radius |a,| *~1. We stipulate
that z lie outside (J,, By. For such z,

1= 2/an| = |2 = anl/lan| > |an|7"72 > (2]2]) 772
Take € > 0 such that s —e > p, and thus n(2|z]) < ¢|z|*~¢ for large z. Thus,

H ‘1 — Z/an| > (2|z|)_(k+2)“(2|z|) > (2|Z|)—c\z\s*5’
nilz/an|>1/2

and the desired result follows,

_ > ozl In(2]z]) » —cl2l®
[1—z/an] > e >e .
n:|z/an|>1/2

For each positive integer n, again let B,, denote the open ball about a, of ra-
dius |a,|7¥71, let A,, denote the open annulus generated by rotating B,, around 0,
and let I,, denote the intersection of A, with R-g. For all large integers N, the
interval [N, N + 1) contains a point r disjoint from (J,, I,,, and so the circle C, is
disjoint from |J,, A,, therefore disjoint from (J,, B,. Thus there is a sequence of
positive values 7 that goes to co such that each circle C, is disjoint from J,, B.

10. AN ENTIRE FUNCTION WITH POLYNOMIAL-GROWTH REAL PART IS A
POLYNOMIAL

We show: Let g = u + iv be entire and satisfy u(re’’) < Cr® for a sequence of
positive values r that goes to oo, with s > 0. Then g is a polynomial of degree at
most s.

Because u is bounded only from one side, as compared to a bound on |u|, much
less on |g|, the proof is more than simply Cauchy’s bound. Take any r as just
described and any integer n > s. Cauchy’s formula gives

g™M() _ 1 / 90€) (7ot
— (re*),

= oo (reif)ntl

n! 271

which is to say,

() (0 1 2 , ,
g'"(0) _ / g(rew)e—mO a0.
n! 2mr™ Jo—o

Also, Cauchy’s theorem gives f:;rog(rew)ei("’l)e d(re’) = 0, and it follows that
/. 92:0 g(re?)e? 49 = 0, from which by complex conjugation,

1 27 " -
= g(re’)e " d6g.
s /9:0 g(re'”)e
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The previous two displayed equations combine to give, recalling that g = u + v
and so g + g = 2u,

(n) (0 1 2m , ,
g '( ) _ u(reze)e—me d97
n! 7™ Jo—o

or, recalling that u(re’?) < Cr® and noting that because Cr® is independent of @
2T _in6
and [;" e dg =0,
(n) (0 1 2m , ,
_9™(0) = — (Cr® — u(re??))e=™? d0,

n! " Jo—o

from which, because Cr* — u(re'®) > 0 for all 0,
(n) 0 1 2m )
7‘9 '( ) < —/ (Cr® —u(re?))df = 2C7T°~™ — 2u(0)r—".
n! "™ Jo—o
Let 7 grow to show that ¢g(™ (0) = 0. Thus the entire function
> oMo
9(z) = ZO gT()z" forall z € C

is a polynomial of degree at most s, as claimed.

11. HADAMARD PRODUCT, PART 2

Our nonzero entire function f has finite order at most p, has a root of order m > 0
at 0, and has nonzero roots {a,}. As before, let

k= lpl,
and consider any s such that
p<s<k+1.
Already we have
f(z) =92 T Er(z/an).
n=1

Now we show that g is a polynomial of degree at most k.
For a sequence of positive values r that goes to co, we have

>e " it 2| =1,

1 Ex(z/an)

from which certainly

> e = if 2] =1

Pk H Ex(z/an)

f(2)] < APl

eul®) — ‘eg(z)| < AeBlIPHelzl” < (Cl2I° gt |z| =r

Consequently, with g = u + v, because also

)
which is to say,
u(rew) < Cr®.
As just shown, g(z) is a polynomial of degree at most s, hence degree at most |s|,
which is to say degree at most k.
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Part 3. Examples
12. THE EULER—RIEMANN ZETA FUNCTION

We establish Hadamard’s product formula

(s —1)¢(s) = eatbs 1+ ) s/ (1 — s> e’/P, seC.
1_[1< Qn) 1:-[

P
n>
Here p runs through the nontrivial zeros of the zeta function, those lying in the
critical strip 0 < Re(s) < 1. Although the values of a and b aren’t particularly
important, they are a = —log2 and b = ¢’(0)/¢(0) — 1 = log 27 — 1.
The function
Zentire(s) = s(1 — s)7*/?T(s/2)¢(s), seC
extends from an analytic function on the right half plane Re(s) > 1 to an entire
function, and the extension is symmetric about the vertical line Re(s) = 1/2, i.e.,
it is invariant under the replacing s by 1 — s.
Let s = o +it. For 0 > 1/2, we have upper bounds of the four constituents s,
775/2, T'(s), and (1 — 5)C(s) of Zentire(s), as follows:
o |s| <el*l for large s.
° |ﬂ.—s/2| = g—0/2 < a4,
e |I'(s/2)| <T'(0/2), and by Stirling’s formula, this is asymptotically at most
Ae™7 in turn at most Aelsllsl,
e Some analysis shows that after extending ((s) — 1/(s — 1) leftward from
o >1to o >0, wehave [((s) —1/(s—1)] < ((3/2)|s]| for o > 1/2, and so
[(1=5)C(s)] < 14¢(3/2)[s| for o > 1/2; from this, certainly |(1 —s)((s)] <
el*l for large s with Re(s) > 1/2.
Altogether these give the upper bound
| Zentive (s)] < AeBlslnlsl - Re(s) > 1/2.
And because |1 — s| ~ |s|, the symmetry of Zentive(s) gives
| Zentire(5)] < APl Re(s) < 1/2.

Altogether Zgpntire(s) has order at most 1, and therefore it has a Hadamard product
expansion

s(1—s)n /2T (s/2)C(s) = P H (1 - 8) e/?, seC.
p
P
But also the reciprocal gamma function has a well known product expansion, in
which ~ denotes the Euler-Mascheroni constant,
S
yr = e T[ (14 ) e, sec
JT(s) esH 1—|—ne , seC
n>1

Such a product expression, though with e® s rather than e7s, follows from the
estimate |1/T(s)| < AePlslmIsl (see Stein and Shakarchi, Theorem 6.1.6, page 165).
Divide the penultimate display by —sm=*/2T'(s/2) and use the previous display to
get, with new a and b, the claimed result,

(s —1)¢(s) = e2Tbs 14 ) es/2n (1 - S) e’’’ seC.
1_[1( 2n) 1;[

n> p
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13. THE SINE FUNCTION

One readily shows that the sine function has order 1, and so for some b € C,
2
: _ bz <
sin(mrz) = e”*mz H (1 - n2> .
n>1

We show that b = 0. Indeed, write the previous display as

sin(mz) b 22

sk Sl 12

T2 € H < n2) ’
n>1
with the left side continued analytically to 1 at z = 0. This says that for small z,
1+ o0(z) = (1+bz+4 0(2)) (14 o(2)) =1+ bz + o(2),

from which b = 0. As an exercise, tracking z2-terms as well shows that ((2) = 72/6.
In fact, an elementary formula for ((2d) where d = 1,2,3,... can be extracted
from the Taylor series expansion and the product expansion of sin(7z)/(7z). This
is unsurprising in light of a well known method to obtain ((2d) from the sum
expansion of 7 cot(7z), the logarithmic derivative of sin(7z).



