THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN ENTIRE FUNCTION

These notes are drawn closely from chapter 5 of **Princeton Lectures in Anal**ysis II: Complex Analysis by Stein and Shakarchi.

Let $f : \mathbb{C} \longrightarrow \mathbb{C}$ be nonzero and entire, with infinitely many roots, vanishing to order $m \ge 0$ at 0. The nonzero roots of f, with repetition for multiplicity, form a sequence $\{a_n\}$ such that $\lim_n |a_n| = \infty$. For an initial product form that attempts to factor f, first define

$$E_0(\zeta) = 1 - \zeta,$$

an entire function of ζ that vanishes only for $\zeta = 1$ and goes to 1 as ζ goes to 0. Thus $E_0(z/a_n)$ vanishes only at $z = a_n$, and for fixed z it goes to 1 as n goes to ∞ . Then define

$$p_0(z) = z^m \prod_{n=1}^{\infty} E_0(z/a_n) = z^m \prod_{n=1}^{\infty} (1 - z/a_n).$$

However, this product need not even converge, much less converge to an entire function that matches the roots of f. We will see that a sufficient condition for such convergence is that $\sum_{n=1}^{\infty} 1/|a_n|$ converges, but this condition fails unless the a_n are sparse enough.

Recall that $\sum_{j=1}^{\infty} \frac{\zeta^j}{j} = \ln((1-\zeta)^{-1})$ and thus $e^{\sum_{j=1}^{\infty} \frac{\zeta^j}{j}} = (1-\zeta)^{-1}$ for $|\zeta| < 1$. With this in mind, for any nonnegative integer k generalize E_0 to

$$E_k(\zeta) = (1 - \zeta)e^{\zeta + \frac{\zeta^2}{2} + \frac{\zeta^3}{3} + \dots + \frac{\zeta^k}{k}},$$

again an entire function of ζ that vanishes only for $\zeta = 1$ and goes to 1 more quickly for larger k as ζ goes to 0; this rate of convergence will be quantified below. Again $E_k(z/a_n)$ vanishes only at $z = a_n$, and so for any nonnegative integer sequence $\{k_n\}$ the expression

$$p_{\{k_n\}}(z) = z^m \prod_{n=1}^{\infty} E_{k_n}(z/a_n) = z^m \prod_{n=1}^{\infty} (1 - z/a_n) e^{z/a_n + \frac{(z/a_n)^2}{2} + \dots + \frac{(z/a_n)^{k_n}}{k_n}}$$

might be an entire function having the roots as f. This $p_{\{k_n\}}$ improves on p_0 because for large enough n to make z/a_n small, its multiplicands $E_{k_n}(z/a_n)$ can be made as close to 1 as desired by choosing larger k_n , and we will see that in particular the sequence $\{k_n\} = \{n\}$ makes $p_{\{k_n\}}$ converge to an entire function with the same roots as f.

Once we know that some $p_{\{k_n\}}$ is entire with the same roots as f, their quotient $f/p_{\{k_n\}}$ defines an entire function that never vanishes. As will be reviewed, the quotient therefore takes the form e^g with g entire. Thus the factorization of f is

$$f(z) = e^{g(z)} z^m \prod_{n=1}^{\infty} E_n(z/a_n).$$

So far, these ideas are due to Weierstrass. Hadamard added to them, as follows. If f has *finite order*, meaning that for some positive constants A, B, and ρ it satisfies a growth bound

$$|f(z)| \le A e^{B|z|^{\rho}}$$
 for all z ,

then its roots are sparse; specifically, $\sum_{n=1}^{\infty} |a_n|^{-s}$ converges if $s > \rho$. We will see that in consequence of this, letting $k = \lfloor \rho \rfloor$, the Weierstrass factorization improves to $f(z) = f_k(z) = e^{g(z)} z^m \prod_{n=1}^{\infty} E_k(z/a_n)$, now with *n*th multiplicand $E_k(z/a_n)$ rather than $E_n(z/a_n)$. That is, the convergence factors all have equal length kaccording to ρ . In practical examples k is often small, e.g., 0 or 1. A second consequence of the sparseness of the roots is that g(z) is a polynomial of degree at most k, as we will also see.

Contents

Part 1. Weierstrass Factorization of an Entire Function	2
1. Estimate of $E_k - 1$	2
2. Infinite product convergence criterion	3
3. A non-vanishing analytic function is an exponential	4
4. Weierstrass product	5
Part 2. Hadamard Factorization of a Finite-Order Entire Function	5
5. Sparseness of roots: statement	5
6. Jensen's formula	5
7. Sparseness of roots: proof	6
8. Hadamard product, part 1	7
9. Lower bound	$\overline{7}$
10. An entire function with polynomial-growth real part is a polynomial	8
11. Hadamard product, part 2	9
Part 3. Examples	10
12. The Euler–Riemann zeta function	10
13. The sine function	11

Part 1. Weierstrass Factorization of an Entire Function

1. Estimate of $E_k - 1$

Let k be a nonnegative integer. Recall the definition

$$E_k(\zeta) = (1 - \zeta)e^{\zeta + \frac{\zeta^2}{2} + \frac{\zeta^3}{3} + \dots + \frac{\zeta^k}{k}}.$$

For k = 0 we have $E_0(\zeta) = 1 - \zeta$ and so $|E_0(\zeta) - 1| = |\zeta|$ for all $\zeta \in \mathbb{C}$. We generalize this to an estimate of $|E_k(\zeta) - 1|$ for any k, though now with a condition on ζ . The argument will show how the factor $e^{\zeta + \zeta^2/2 + \zeta^3/3 + \dots + \zeta^k/k}$ brings $E_k(\zeta)$ closer to 1 for larger k when ζ is small.

Suppose that $|\zeta| \leq 1/2$; here the 1/2 could be any positive r < 1 with no essential change to the argument to follow, but we use 1/2 for definiteness. Then

$$1-\zeta = e^{\log(1-\zeta)} = e^{-\zeta - \frac{\zeta^2}{2} - \frac{\zeta^3}{3} - \dots - \frac{\zeta^k}{k} - \frac{\zeta^{k+1}}{k+1} - \dots},$$

and so, because $E_k(\zeta) = (1-\zeta)e^{\zeta+\zeta^2/2+\zeta^3/3+\cdots+\zeta^k/k}$,

$$E_k(\zeta) = e^w$$
 where $w = w_k(\zeta) = -\frac{\zeta^{k+1}}{k+1} - \frac{\zeta^{k+2}}{k+2} - \cdots$.

Because $|\zeta| \leq 1/2$,

$$|w| \le |\zeta|^{k+1} \sum_{j=0}^{\infty} \frac{1}{2^j} = 2|\zeta|^{k+1},$$

and in particular $|w| \leq 1$, even for k = 0. So now,

$$|E_k(\zeta) - 1| = |e^w - 1| \le \sum_{j=1}^{\infty} \frac{|w|^j}{j!} \le (e - 1)|w|$$
 because $|w| \le 1$.

Together the previous two displays give our desired estimate,

(1)
$$|E_k(\zeta) - 1| \le 2(e-1)|\zeta|^{k+1}$$
 if $|\zeta| \le 1/2$.

2. INFINITE PRODUCT CONVERGENCE CRITERION

Let $\{z_n\}$ be a complex sequence, with $z_n \neq -1$ for all n. We show:

If
$$\sum_{n=1}^{\infty} |z_n|$$
 converges then $\prod_{n=1}^{\infty} (1+z_n)$ converges and can be rearranged.

Begin by noting that all but finitely many z_n satisfy $|z_n| \leq 1/2$. We freely work only with these z_n , for which

$$\left|\log(1+z_n)\right| = \left|z_n(1-z_n/2+z_n^2/3+\cdots)\right| \le 2|z_n|.$$

Thus the sequence $\left\{\sum_{n=1}^{N} \log(1+z_n)\right\}$ of partial sums of $\sum_{n=1}^{\infty} \log(1+z_n)$ converges absolutely, and so it converges and can be rearranged. Consequently, because the complex exponential function is continuous, convergence and rearrangability also hold for the sequence

$$\left\{e^{\sum_{n=1}^{N}\log(1+z_n)}\right\} = \left\{\prod_{n=1}^{N}e^{\log(1+z_n)}\right\} = \left\{\prod_{n=1}^{N}(1+z_n)\right\}.$$

This is the sequence of partial products of $\prod_{n=1}^{\infty}(1+z_n)$, and the convergence criterion is established. The argument has shown further that $\prod_{n=1}^{\infty}(1+z_n)$ is nonzero under the hypotheses on $\{z_n\}$, because it is $e^{\sum_{n=1}^{\infty}\log(1+z_n)}$.

Theorem 2.1. Let Ω be domain in \mathbb{C} . Let $\{\varphi_n\}$ be a sequence of analytic functions on Ω . Suppose that:

For every compact K in Ω there is a summable sequence $\{x_n\} = \{x_n(K)\}$ in $\mathbb{R}_{\geq 0}$ such that $|\varphi_n(z)| \leq x_n$ for all n, uniformly over $z \in K$.

Then the product $p(z) = \prod_{n=1}^{\infty} (1 + \varphi_n(z))$ is analytic on Ω , and its roots are precisely the values $z \in \Omega$ such that $1 + \varphi_n(z) = 0$ for some n.

The partial products of p(z) are analytic on Ω . For any compact K in Ω the bound $|\varphi_n(z)| \leq x_n$ for all n uniformly over K combines with the argument just given to establish that p(z) converges uniformly on K. Because p(z) on Ω has analytic partial products and converges uniformly on compact it is analytic. The argument just given also establishes the last statement of the theorem.

4 THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN ENTIRE FUNCTION

Example 1. Let a sequence $\{a_n\}$ of nonzero complex numbers be given such that $\lim_{n\to\infty} |a_n| = \infty$. Let $\varphi_n(z) = E_n(z/a_n) - 1$ for each n. Given any compact K in \mathbb{C} , there exists $n_o \in \mathbb{Z}_{\geq 0}$ such that $|z/a_n| \leq 1/2$ for all $n \geq n_o$, uniformly over $z \in K$. Let $x_n = \sup_{z \in K} |\varphi_n(z)|$ for $n < n_o$, and let $x_n = (e-1)/2^n$ for $n \geq n_o$. Thus, using (1) from the end of the previous section,

$$|\varphi_n(z)| = |E_n(z/a_n) - 1| \le 2(e-1)|z/a_n|^{n+1} \le x_n$$
 for all $n \ge n_o$ and $z \in K$,

and certainly $|\varphi_n(z)| \leq x_n$ for all $n < n_o$ and $z \in K$. This shows that the product $\prod_{n=1}^{\infty} E_n(z/a_n)$ is entire with roots $\{a_n\}$.

Example 2. Let a sequence $\{a_n\}$ of nonzero complex numbers be given such that $\sum_{n=1}^{\infty} |a_n|^{-k-1}$ converges for some nonnegative integer k. This is a stronger hypothesis than in the previous example. Let $\varphi_n(z) = E_k(z/a_n) - 1$ for each n, here with E_k rather than E_n as in the previous example. Given any compact K in \mathbb{C} , there exists c > 0 such that $2(e-1)|z|^{k+1} \leq c$ for all $z \in K$, and there exists $n_o \in \mathbb{Z}_{\geq 0}$ such that $|z/a_n| \leq 1/2$ for all $n \geq n_o$. Let $x_n = \sup_{z \in K} |\varphi_n(z)|$ for $n < n_o$, and let $x_n = c/|a_n|^{k+1}$ for $n \geq n_o$. Thus, again using (1),

$$|\varphi_n(z)| = |E_k(z/a_n) - 1| \le 2(e-1)|z/a_n|^{k+1} \le x_n$$
 for all $n \ge n_o$ and $z \in K$,

and certainly $|\varphi_n(z)| \leq x_n$ for all $n < n_o$ and $z \in K$. This shows that the product $\prod_{n=1}^{\infty} E_k(z/a_n)$ is entire with roots $\{a_n\}$. Especially, if $\sum_{n=1}^{\infty} 1/|a_n|$ converges then this holds for $\prod_{n=1}^{\infty} (1-z/a_n)$. And if $\sum_{n=1}^{\infty} 1/|a_n|^2$ converges then this holds for $\prod_{n=1}^{\infty} (1-z/a_n)e^{z/a_n}$.

Example 3. (This example is not necessary for the present writeup.) Let Ω be the right half plane $\operatorname{Re}(s) > 1$, and let $\varphi_n(s)$ equal $(1-p^{-s})^{-1}-1 = (1-p^{-s})^{-1}p^{-s}$ if n is a prime p, while φ_n is 0 if n is composite; the variable s rather than z is standard in this context. Let K be a compact subset of Ω . There exists some $\sigma > 1$ such that $\operatorname{Re}(s) \geq \sigma$ on K. Let $\{x_n\} = \{2n^{-\sigma}\}$. For any prime p, for all $s \in K$,

$$|\varphi_p(s)| = |(1 - p^{-s})^{-1}p^{-s}| \le 2p^{-\sigma} = x_p,$$

and certainly $|\varphi_n(s)| \leq x_n$ for composite n and $s \in K$. This shows that the product $\zeta(s) = \prod_p (1-p^{-s})^{-1}$ is holomorphic on $\operatorname{Re}(s) > 1$, with no reference to it equaling the sum $\sum_{n=1}^{\infty} n^{-s}$.

3. A NON-VANISHING ANALYTIC FUNCTION IS AN EXPONENTIAL

We show: If Ω is a simply connected region, and if $f : \Omega \longrightarrow \mathbb{C}$ is analytic and never vanishes, then f takes the form e^g for some analytic g on Ω .

The argument is constructive. Let a be a point of Ω , and take any value of $\log(f(a))$. Introduce

$$g(z) = \log(f(a)) + \int_{\zeta=a}^{z} \frac{f'(\zeta) \,\mathrm{d}\zeta}{f(\zeta)}$$

well defined because Ω is simply connected. Then g'(z) = f'(z)/f(z), and so

$$(f(z)e^{-g(z)})' = (f'(z) - f(z) \cdot f'(z)/f(z))e^{-g(z)} = 0.$$

Also $f(a)e^{-g(a)} = 1$, and therefore $f = e^g$.

Especially, if the product $p(z) = z^m \prod_n E_{k_n}(z/a_n)$ is entire and has the same roots as f(z), then $f(z) = e^{g(z)}p(z)$ for some entire g.

5

4. Weierstrass product

Let f be nonzero entire and have nonzero roots $\{a_n\}$. These roots satisfy the condition $\lim_{n} |a_n| = \infty$, and so the first example at the end of section 2 shows that the product $p(z) = z^m \prod_{n=1}^{\infty} E_n(z/a_n)$ converges to an entire function having the same roots as f. Section 3 therefore gives the Weierstrass factorization of f,

$$f(z) = e^{g(z)} z^m \prod_{n=1}^{\infty} E_n(z/a_n).$$

Here the convergence factor of E_n gets longer as n grows, and all that we know about q is that it is entire.

Part 2. Hadamard Factorization of a Finite-Order Entire Function

Let f be a nonzero entire function of finite order at most $\rho > 0$, meaning that for some positive constants A and B it satisfies a growth bound

$$|f(z)| \le Ae^{B|z|^{\rho}}$$
 for all z.

Here the condition for all z can be replaced by for all z such that |z| > R for some R. The actual order of f is the infimum of all such ρ ; for example, if $|f(z)| \leq Ae^{|z| \ln |z|}$ but $|f(z)| \not\leq Ae^{|z|}$, or if $|f(z)| \leq p(|z|)e^{|z|}$ for some polynomial p but $|f(z)| \not\leq Ae^{|z|}$, then still f has order 1. If f has finite order ρ_f and similarly for g then fg has finite order $\max\{\rho_f, \rho_g\}$.

Let f have order $m \in \mathbb{Z}_{\geq 0}$ at 0. Let $\{a_n\}$ be the nonzero roots of f, with multiplicity, so that $|a_n| \to \infty$. For any $r \ge 0$, let $\mathfrak{n}(r) = \mathfrak{n}_f(r)$ denote the number of nonzero roots a_n of f such that $|a_n| < r$. The terminology f, ρ , m, $\{a_n\}$, \mathfrak{n} is in effect for the rest of this writeup. We note that if f is entire with a root of order mat 0, then f has order at most ρ if and only if f/z^m has order at most ρ .

5. Sparseness of roots: statement

To prepare for Hadamard's factorization theorem, our first main goal is as follows.

Theorem 5.1. Let f, ρ , $\{a_n\}$, and \mathfrak{n} be as just above. Then

- $\begin{array}{ll} (1) \ \mathfrak{n}(r) \leq C |r|^{\rho} \ for \ all \ large \ enough \ r. \\ (2) \ \sum_{n=1}^{\infty} |a_n|^{-s} \ converges \ for \ all \ s > \rho. \end{array}$

The main result needed to prove the theorem is a variant of Jensen's formula, to be established next.

6. JENSEN'S FORMULA

For R > 0 and φ analytic on the closed complex ball \overline{B}_R , where $\varphi(0) \neq 0$ and $\varphi \neq 0$ on the boundary circle C_R , letting the finitely many roots of φ be denoted $\{a_n\}$ with repetition for multiplicity,

(J1)
$$\ln |\varphi(0)| = \sum_{n} \ln \frac{|a_{n}|}{R} + \frac{1}{2\pi} \int_{\theta=0}^{2\pi} \ln |\varphi(Re^{i\theta})| \,\mathrm{d}\theta.$$

The proof begins with two reductions:

- The formula for general R follows from the formula for R = 1.
- The formula for a product $\varphi_1 \varphi_2$ follows from the formula for φ_1 and for φ_2 .

6 THE WEIERSTRASS/HADAMARD FACTORIZATION OF AN ENTIRE FUNCTION

• The decomposition $\varphi(z) = \varphi_o(z) \prod_n (z - a_n)$, where $\varphi_o(z)$ is the analytic extension of $\varphi(z) / \prod_n (z - a_n)$, reduces the formula for R = 1 to two cases, where φ has no roots and where $\varphi(z) = z - a_1$.

If φ on \overline{B}_1 has no roots then it takes the form $\varphi = e^g$, as discussed above. Let g = u + iv with u and v harmonic conjugates, so that $|\varphi| = e^u$ and thus $\ln |\varphi| = u$. The mean value property of harmonic functions gives

$$\ln |\varphi(0)| = u(0) = \frac{1}{2\pi} \int_{\theta=0}^{2\pi} u(e^{i\theta}) \,\mathrm{d}\theta = \frac{1}{2\pi} \int_{\theta=0}^{2\pi} \ln |\varphi(e^{i\theta})| \,\mathrm{d}\theta.$$

If $\varphi(z) = z - a_1$ with $|a_1| < 1$ then the desired formula reduces to

$$\int_{\theta=0}^{2\pi} \ln |e^{i\theta} - a_1| \,\mathrm{d}\theta = 0.$$

Because $\ln |e^{i\theta} - a_1| = \ln |1 - e^{-i\theta}a_1|$, and then we may replace θ by $-\theta$ in the integral, this is

$$\int_{\theta=0}^{2\pi} \ln|1 - a_1 e^{-i\theta}| \,\mathrm{d}\theta = 0.$$

Similarly to the first case, the function $f(z) = 1 - a_1 z$ takes the form e^g on \overline{B}_1 , where g = u + iv, and so again the integral is a mean value integral for u. But this time u(0) = 0 because $\varphi(0) = 1$, and so the integral is 0 as desired.

A variant of Jensen's formula is as follows.

(J2)
$$\ln|\varphi(0)| = -\int_{x=0}^{R} \mathfrak{n}_{\varphi}(x) \frac{\mathrm{d}x}{x} + \frac{1}{2\pi} \int_{\theta=0}^{2\pi} \ln|\varphi(Re^{i\theta})| \,\mathrm{d}\theta$$

This follows from Jensen's formula (J1) if we can establish the equality

$$-\int_{x=0}^{R} \mathfrak{n}(x) \frac{\mathrm{d}x}{x} = \sum_{n} \ln \frac{|a_n|}{R} \,,$$

in which $\mathfrak{n} = \mathfrak{n}_{\varphi}$. This equality reduces to the case R = 1. Define $\eta_n(x)$ to be 1 if $x > |a_n|$ and 0 otherwise, so that $\mathfrak{n}(x) = \sum_n \eta_n(x)$, and compute,

$$-\int_{x=0}^{1} \mathfrak{n}(x) \frac{\mathrm{d}x}{x} = -\sum_{n} \int_{x=0}^{1} \eta_{n}(x) \frac{\mathrm{d}x}{x} = -\sum_{n} \int_{x=|a_{n}|}^{1} \frac{\mathrm{d}x}{x} = \sum_{n} \ln|a_{n}|.$$

7. Sparseness of roots: proof

We prove part (1) of Theorem 5.1. Partially reiterating the theorem's hypotheses, the nonzero entire function f has finite order at most ρ and root-counting function \mathfrak{n} , and we want to show that

 $\mathfrak{n}(r) \leq Cr^{\rho}$ for some $C \in \mathbb{R}_{>0}$ and all large enough r.

It suffices to prove this in the case $f(0) \neq 0$. For any $r \in \mathbb{R}_{>0}$, let R = 2r, so that $\int_{r}^{R} dx/x = \ln 2$. Then, using the variant Jensen's formula (J2) for the last step in the next computation,

$$\mathfrak{n}(r)\ln 2 = \mathfrak{n}(r)\int_{r}^{R} \frac{\mathrm{d}x}{x} \le \int_{0}^{R} \mathfrak{n}(x)\frac{\mathrm{d}x}{x} = \frac{1}{2\pi}\int_{\theta=0}^{2\pi} \ln|f(Re^{i\theta})|\,\mathrm{d}\theta - \ln|f(0)|.$$

Consequently,

$$\mathfrak{n}(r) \leq C_1 r^{\rho} + C_2$$
 for some $C_1 \in \mathbb{R}_{>0}$ and $C_2 \in \mathbb{R}$, for all $r \in \mathbb{R}_{>0}$,

7

and the result follows.

We prove part (2) of Theorem 5.1. Recall that the nonzero roots of f are $\{a_n\}$. We show that $\sum_{n} |a_n|^{-s}$ converges if $s > \rho$. Indeed, we now have $\mathfrak{n}(r) \leq Cr^{\rho}$ for all $r \geq 2^{j_o}$ for some nonnegative integer j_o . Compute,

$$\sum_{|a_n| \ge 2^{j_o}} |a_n|^{-s} = \sum_{j=j_o}^{\infty} \sum_{2^j \le |a_n| < 2^{j+1}} |a_n|^{-s} \le \sum_{j=j_o}^{\infty} \mathfrak{n}(2^{j+1}) 2^{-js} \le C \sum_{j=j_o}^{\infty} 2^{(j+1)\rho - js}.$$

The last sum is $2^{\rho} \sum_{j=j_o}^{\infty} (2^{\rho-s})^j$, which converges because $s > \rho$.

8. HADAMARD PRODUCT, PART 1

Let f be nonzero entire of finite order at most $\rho > 0$. Consider the nonnegative integer

$$k = |\rho|,$$

so that $k \leq \rho < k + 1$. As just shown, the nonzero roots $\{a_n\}$ are such that $\sum_{n=1}^{\infty} |a_n|^{-k-1}$ converges, and so the second example at the end of section 2 shows that the product $z^m \prod_{n=1}^{\infty} E_k(z/a_n)$ converges to an entire function having the same roots as f. Section 3 therefore gives the Hadamard factorization of f,

$$f(z) = e^{g(z)} z^m \prod_{n=1}^{\infty} E_k(z/a_n).$$

Here all the terms $E_k(z/a_n)$ have convergence factors of the same length. The remaining work is to analyze g(z). This is more technical.

9. Lower bound

Freely ignoring any root of f at 0, to show that g is a low degree polynomial we must bound the quotient $f(z)/\prod_{n=1}^{\infty} E_k(z/a_n)$ from above, and this requires bounding the product $\prod_{n=1}^{\infty} E_k(z/a_n)$ from below.

Again with f having finite order at most ρ and with $k = \lfloor \rho \rfloor$, consider any s such that $\rho < s < k + 1$. Thus s > k. Consider any $z \in \mathbb{C}$. We want to show that subject to a condition on z to be specified, $\prod_{n=1}^{\infty} E_k(z/a_n)$ is bounded from below as follows,

$$\left|\prod_{n=1}^{\infty} E_k(z/a_n)\right| \ge e^{-c|z|^s}.$$

For the infinitely many values n such that $|z/a_n| \leq 1/2$, we have shown in section 1 that $E_k(z/a_n) = e^w$ where $w = -\sum_{j \geq k+1} (z/a_n)^j/j$ and so $|w| \leq 2|z/a_n|^{k+1}$. Because $|e^w| \ge e^{-|w|}$,

$$|E_k(z/a_n)| \ge e^{-2|z/a_n|^{k+1}} = e^{-2|z/a_n|^{k+1-s}|z/a_n|^s} \ge e^{-(1/2)^{k-s}|z|^s/|a_n|^s}.$$

Thus, because $\sum_{n=1}^{\infty} |a_n|^{-s}$ converges,

$$\left|\prod_{n:|z/a_n|\leq 1/2} E_k(z/a_n)\right| \geq e^{-c|z|^s},$$

Т

with $c = 2^{s-k} \sum_{n=1}^{\infty} |a_n|^{-s}$. For the finite many values *n* such that $|z/a_n| > 1/2$,

$$|E_k(z/a_n)| = |1 - z/a_n| |e^{\sum_{j=1}^{\kappa} (z/a_n)^j / j}|,$$

and, again because $|e^w| \ge e^{-|w|}$, and noting that $|2z/a_n| \ge 1$, the exponential term satisfies

$$|e^{\sum_{j=1}^{k} (z/a_n)^j/j}| \ge e^{-\sum_{j=1}^{k} |2z/a_n|^j/(2^jj)|} \ge e^{-c|z|^k} \ge e^{-c|z|^s},$$

with $c = k2^k/a_1^k$. So in order to show the condition $|\prod_{n=1}^{\infty} E_k(z/a_n)| \ge e^{-c|z|^s}$, only the non-exponential terms remain, and we need to show that

$$\prod_{n:|z/a_n|>1/2} |1-z/a_n| \ge e^{-c|z|^s}.$$

However, this is not guaranteed until we add a condition on z. For each positive integer n, let B_n denote the open ball about a_n of radius $|a_n|^{-k-1}$. We stipulate that z lie outside $\bigcup_n B_n$. For such z,

$$|1 - z/a_n| = |z - a_n|/|a_n| \ge |a_n|^{-k-2} \ge (2|z|)^{-k-2}.$$

Take $\varepsilon > 0$ such that $s - \varepsilon > \rho$, and thus $\mathfrak{n}(2|z|) \leq c|z|^{s-\varepsilon}$ for large z. Thus,

$$\prod_{|z/a_n|>1/2} |1-z/a_n| \ge (2|z|)^{-(k+2)\mathfrak{n}(2|z|)} \ge (2|z|)^{-c|z|^{s-\varepsilon}},$$

and the desired result follows,

n

$$\prod_{n:|z/a_n|>1/2} |1-z/a_n| \ge e^{-c|z|^{s-\varepsilon} \ln(2|z|)} \ge e^{-c|z|^s}.$$

For each positive integer n, again let B_n denote the open ball about a_n of radius $|a_n|^{-k-1}$, let A_n denote the open annulus generated by rotating B_n around 0, and let I_n denote the intersection of A_n with $\mathbb{R}_{>0}$. For all large integers N, the interval [N, N + 1) contains a point r disjoint from $\bigcup_n I_n$, and so the circle C_r is disjoint from $\bigcup_n A_n$, therefore disjoint from $\bigcup_n B_n$. Thus there is a sequence of positive values r that goes to ∞ such that each circle C_r is disjoint from $\bigcup_n B_n$.

10. An entire function with polynomial-growth real part is a polynomial

We show: Let g = u + iv be entire and satisfy $u(re^{i\theta}) \leq Cr^s$ for a sequence of positive values r that goes to ∞ , with $s \geq 0$. Then g is a polynomial of degree at most s.

Because u is bounded only from one side, as compared to a bound on |u|, much less on |g|, the proof is more than simply Cauchy's bound. Take any r as just described and any integer n > s. Cauchy's formula gives

$$\frac{g^{(n)}(0)}{n!} = \frac{1}{2\pi i} \int_{\theta=0}^{2\pi} \frac{g(re^{i\theta})}{(re^{i\theta})^{n+1}} \,\mathrm{d}(re^{i\theta}),$$

which is to say,

$$\frac{g^{(n)}(0)}{n!} = \frac{1}{2\pi r^n} \int_{\theta=0}^{2\pi} g(re^{i\theta}) e^{-in\theta} \,\mathrm{d}\theta.$$

Also, Cauchy's theorem gives $\int_{\theta=0}^{2\pi} g(re^{i\theta})e^{i(n-1)\theta} d(re^{i\theta}) = 0$, and it follows that $\int_{\theta=0}^{2\pi} g(re^{i\theta})e^{in\theta} d\theta = 0$, from which by complex conjugation,

$$0 = \frac{1}{2\pi r^n} \int_{\theta=0}^{2\pi} \overline{g}(re^{i\theta}) e^{-in\theta} \,\mathrm{d}\theta.$$

The previous two displayed equations combine to give, recalling that g = u + ivand so $g + \overline{g} = 2u$,

$$\frac{g^{(n)}(0)}{n!} = \frac{1}{\pi r^n} \int_{\theta=0}^{2\pi} u(re^{i\theta}) e^{-in\theta} \,\mathrm{d}\theta,$$

or, recalling that $u(re^{i\theta}) \leq Cr^s$ and noting that because Cr^s is independent of θ and $\int_{\theta=0}^{2\pi} e^{-in\theta} d\theta = 0$,

$$-\frac{g^{(n)}(0)}{n!} = \frac{1}{\pi r^n} \int_{\theta=0}^{2\pi} (Cr^s - u(re^{i\theta}))e^{-in\theta} \,\mathrm{d}\theta,$$

from which, because $Cr^s - u(re^{i\theta}) \ge 0$ for all θ ,

$$\frac{|g^{(n)}(0)|}{n!} \le \frac{1}{\pi r^n} \int_{\theta=0}^{2\pi} (Cr^s - u(re^{i\theta})) \,\mathrm{d}\theta = 2Cr^{s-n} - 2u(0)r^{-n}.$$

Let r grow to show that $g^{(n)}(0) = 0$. Thus the entire function

$$g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} z^n$$
 for all $z \in \mathbb{C}$

is a polynomial of degree at most s, as claimed.

11. Hadamard product, part 2

Our nonzero entire function f has finite order at most ρ , has a root of order $m \ge 0$ at 0, and has nonzero roots $\{a_n\}$. As before, let

$$k = \lfloor \rho \rfloor,$$

and consider any s such that

$$\rho < s < k+1.$$

Already we have

$$f(z) = e^{g(z)} z^m \prod_{n=1}^{\infty} E_k(z/a_n)$$

Now we show that g is a polynomial of degree at most k.

For a sequence of positive values r that goes to ∞ , we have

$$\left|\prod_{n=1}^{\infty} E_k(z/a_n)\right| \ge e^{-c|z|^s} \quad \text{if } |z| = r,$$

from which certainly

$$\left| z^m \prod_{n=1}^{\infty} E_k(z/a_n) \right| \ge e^{-c|z|^s} \quad \text{if } |z| = r.$$

Consequently, with g = u + iv, because also $|f(z)| \le A e^{B|z|^{\rho}}$,

$$e^{u(z)} = |e^{g(z)}| \le A e^{B|z|^{\rho} + c|z|^s} \le e^{C|z|^s}$$
 if $|z| = r$,

which is to say,

$$u(re^{i\theta}) \le Cr^s$$

As just shown, g(z) is a polynomial of degree at most s, hence degree at most $\lfloor s \rfloor$, which is to say degree at most k.

Part 3. Examples

12. The Euler-Riemann zeta function

We establish Hadamard's product formula

$$(s-1)\zeta(s) = e^{a+bs} \prod_{n \ge 1} \left(1 + \frac{s}{2n}\right) e^{-s/2n} \prod_{\rho} \left(1 - \frac{s}{\rho}\right) e^{s/\rho}, \quad s \in \mathbb{C}.$$

Here ρ runs through the nontrivial zeros of the zeta function, those lying in the critical strip $0 < \operatorname{Re}(s) < 1$. Although the values of a and b aren't particularly important, they are $a = -\log 2$ and $b = \zeta'(0)/\zeta(0) - 1 = \log 2\pi - 1$.

The function

$$Z_{\text{entire}}(s) = s(1-s)\pi^{-s/2}\Gamma(s/2)\zeta(s), \quad s \in \mathbb{C}$$

extends from an analytic function on the right half plane $\operatorname{Re}(s) > 1$ to an entire function, and the extension is symmetric about the vertical line $\operatorname{Re}(s) = 1/2$, i.e., it is invariant under the replacing s by 1-s.

Let $s = \sigma + it$. For $\sigma \ge 1/2$, we have upper bounds of the four constituents s, $\pi^{-s/2}$, $\Gamma(s)$, and $(1-s)\zeta(s)$ of $Z_{\text{entire}}(s)$, as follows:

- $|s| \le e^{|s|}$ for large s. $|\pi^{-s/2}| = \pi^{-\sigma/2} \le \pi^{-1/4}$.
- $|\Gamma(s/2)| \leq \Gamma(\sigma/2)$, and by Stirling's formula, this is asymptotically at most $Ae^{\sigma \ln \sigma}$, in turn at most $Ae^{|s| \ln |s|}$.
- Some analysis shows that after extending $\zeta(s) 1/(s-1)$ leftward from $\sigma > 1$ to $\sigma > 0$, we have $|\zeta(s) - 1/(s-1)| \leq \zeta(3/2)|s|$ for $\sigma \geq 1/2$, and so $|(1-s)\zeta(s)| \leq 1+\zeta(3/2)|s|$ for $\sigma \geq 1/2$; from this, certainly $|(1-s)\zeta(s)| \leq 1-\varepsilon$ $e^{|s|}$ for large s with $\operatorname{Re}(s) \geq 1/2$.

Altogether these give the upper bound

$$Z_{\text{entire}}(s) \leq A e^{B|s|\ln|s|}, \quad \text{Re}(s) \geq 1/2.$$

And because $|1 - s| \sim |s|$, the symmetry of $Z_{\text{entire}}(s)$ gives

$$Z_{\text{entire}}(s) \leq A e^{B|s|\ln|s|}, \quad \text{Re}(s) < 1/2.$$

Altogether $Z_{\text{entire}}(s)$ has order at most 1, and therefore it has a Hadamard product expansion

$$s(1-s)\pi^{-s/2}\Gamma(s/2)\zeta(s) = e^{a+bs}\prod_{\rho} \left(1-\frac{s}{\rho}\right)e^{s/\rho}, \quad s \in \mathbb{C}.$$

But also the reciprocal gamma function has a well known product expansion, in which γ denotes the Euler-Mascheroni constant,

$$1/\Gamma(s) = e^{\gamma s} s \prod_{n \ge 1} \left(1 + \frac{s}{n} \right) e^{-s/n}, \quad s \in \mathbb{C}.$$

Such a product expression, though with $e^{a'+b's}$ rather than $e^{\gamma s}$, follows from the estimate $|1/\Gamma(s)| \leq Ae^{B|s|\ln|s|}$ (see Stein and Shakarchi, Theorem 6.1.6, page 165). Divide the penultimate display by $-s\pi^{-s/2}\Gamma(s/2)$ and use the previous display to get, with new a and b, the claimed result,

$$(s-1)\zeta(s) = e^{a+bs} \prod_{n\geq 1} \left(1+\frac{s}{2n}\right) e^{-s/2n} \prod_{\rho} \left(1-\frac{s}{\rho}\right) e^{s/\rho}, \quad s \in \mathbb{C}.$$

13. The sine function

One readily shows that the sine function has order 1, and so for some $b \in \mathbb{C}$,

$$\sin(\pi z) = e^{bz} \pi z \prod_{n \ge 1} \left(1 - \frac{z^2}{n^2} \right).$$

We show that b = 0. Indeed, write the previous display as

$$\frac{\sin(\pi z)}{\pi z} = e^{bz} \prod_{n \ge 1} \left(1 - \frac{z^2}{n^2} \right),$$

with the left side continued analytically to 1 at z = 0. This says that for small z,

$$1 + o(z) = (1 + bz + o(z))(1 + o(z)) = 1 + bz + o(z),$$

from which b = 0. As an exercise, tracking z^2 -terms as well shows that $\zeta(2) = \pi^2/6$. In fact, an elementary formula for $\zeta(2d)$ where $d = 1, 2, 3, \ldots$ can be extracted from the Taylor series expansion and the product expansion of $\sin(\pi z)/(\pi z)$. This is unsurprising in light of a well known method to obtain $\zeta(2d)$ from the sum expansion of $\pi \cot(\pi z)$, the logarithmic derivative of $\sin(\pi z)$.