
GAMMA FUNCTION SYMMETRY AND DUPLICATION

In the open right complex half plane, the gamma function is

Γ(s) =

∫ ∞
t=0

tse−t
dt

t
, Re(s) > 0.

Two basic properties of gamma are

• Γ(1) = 1 and Γ(1/2) =
√
π.

• Γ(s+ 1) = sΓ(s), so that Γ(n+ 1) = n! for n = 0, 1, 2, . . . .

The volume of the n-dimensional unit ball is πn/2/(n/2)! for n = 1, 2, 3, . . . , where
naturally (n/2)! is understood to mean Γ(n/2 + 1).

Various methods extend the gamma function meromorphically to the full com-
plex plane. One approach is to note that the left side of the equality

Γ(s+ 1) = sΓ(s)

is defined on the larger half plane Re(s) > −1, defining the right side on the larger
half plane as well; now the left side is defined on Re(s) > −2, and so on.

A second approach is to note that the integral
∫∞
t=0

tse−t dt/t converges robustly
for all complex s at its upper endpoint and is fragile only at its lower endpoint,
requiring Re(s) > 0 there. Thus, for Re(s) > 0 we break the integral into two
pieces and then pass the exponential power series through the first one,

Γ(s) =

∫ 1

t=0

tse−t
dt

t
+

∫ ∞
t=1

tse−t
dt

t

=

∞∑
n=0

(−1)n

n!

∫ 1

t=0

ts+n dt

t
+

∫ ∞
t=1

tse−t
dt

t

=

∞∑
n=0

(−1)n

n!(s+ n)
+

∫ ∞
t=1

tse−t
dt

t
.

The last expression just computed extends meromorphically to C, with a simple
pole at each nonpositive integer −n, where the residue is (−1)n/n!.

A third approach is suggested by the second one, as follows. Because Γ(s) has
a simple pole at each nonpositive integer as just described, Γ(s)Γ(1 − s) has a
simple pole at every integer. Further the residue of Γ(s)Γ(1− s) at any nonpositive
integer −n is (−1)n because Γ(n+ 1) = n!. And because Γ(s)Γ(1− s) is symmetric
about the vertical line Re(s) = 1/2, similarly its residue at any positive integer n
is also (−1)n. Beyond this, we have

Γ(s)Γ(1− s) =
Γ(s+ 1)

s
(1− s− 1)Γ(1− s− 1) = −Γ(s+ 1)Γ(1− (s+ 1)),

so that Γ(s)Γ(1 − s) has skew-period 1. All these properties of Γ(s)Γ(1 − s) are
shared by the function π/ sinπs, and so we wonder how closely the two are related.

In fact they are equal. It suffices to show that

Γ(s)Γ(1− s) =
π

sinπs
, 0 < Re(s) < 1.
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And then this identity can be used to extend Γ(s) meromorphically to C without
reference to the arguments given above. With these ideas in mind, this writeup
establishes the boxed identity.

The Haar measure of the multiplicative group of positive real numbers (R×>0, ·)
is

dµ(t) =
dt

t
.

Compatibly with the familiar rules d(t + c) = dt and d(at) = a dt for the usual
measure dt of the additive group (R,+), we have

dµ(ct) =
d(ct)

ct
=

dt

t
= dµ(t).

and

dµ(ta) =
d(ta)

ta
= a

dt

t
= adµ(t).

The integral
∫∞
t=1

ts dµ(t) converges for Re(s) < 0, and so, because dµ(t−1) =

−dµ(t), the integral
∫ 1

t=0
ts dµ(t) converges for Re(s) > 0.

The definition of the gamma function as an integral is really

Γ(s) =

∫
R×

>0

tse−t dµ(t), Re(s) > 0.

In the usual notation for the gamma integral as in integral from 0 to ∞, it should
be understood that the lower limit of integration 0 is just as improper as the
upper limit ∞. Despite the lower limit of integration being improper, the integral
converges for Re(s) > 0, as just explained. Also, the gamma integral converges
at its improper upper limit of integration because the exponential decay of e−t

dominates the polynomial growth of ts.

Now we establish the desired identity,

Γ(s)Γ(1− s) =
π

sinπs
, 0 < Re(s) < 1.

To do so, it suffices to consider only real s between 0 and 1. For such s, the
definition of gamma gives

Γ(s)Γ(1− s) =

∫∫
R×

>0×R
×
>0

wsx1−se−w−x dµ(x) dµ(w).

Replace x by wx and recall that dµ(wx) = dµ(x),

Γ(s)Γ(1− s) =

∫∫
R×

>0×R
×
>0

wx1−se−w(x+1) dµ(x) dµ(w).

Exchange the order of integration and change to ordinary measure,

Γ(s)Γ(1− s) =

∫ ∞
x=0

x−s
∫ ∞
w=0

e−(x+1)w dw dx.

The inner integral is 1/(x+ 1), leaving

Γ(s)Γ(1− s) =

∫ ∞
x=0

x−s dx

x+ 1
.

And we have evaluated this last integral by contour integration,

Γ(s)Γ(1− s) =
π

sinπs
, 0 < s < 1.
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As above, the result extends by uniqueness to all complex s such that 0 < Re(s) < 1,
and then it extends Γ to all of C.

The relation Γ(s)Γ(1 − s) =
∫∞
x=0

x−s/(x + 1) dx for 0 < s < 1 is a special case
of the more general relation Γ(a)Γ(b) = Γ(a + b)B(a, b) for a, b > 0, where B is

the beta integral B(a, b) =
∫ 1

x=0
xa−1(1−x)b−1 dx. The more general relation gives

a proof of the Legendre duplication formula for the gamma function. We explain
these matters next.

The beta function is

B(a, b) =

∫ 1

x=0

xa−1(1− x)b−1 dx, a > 0, b > 0.

Compute, with x = 1+y
2 at the second step to follow and then with x = y2

so that dx = 2y dy and thus dy = 1
2x1/2 dx = 1

2x
1/2−1 dx at the fifth step, that

for b > 0,

B(b, b) =

∫ 1

x=0

(
x(1− x)

)b−1
dx

=
1

2

∫ 1

y=−1

(
1 + y

2
· 1− y

2

)b−1

dy

= 21−2b
∫ 1

y=−1
(1− y2)b−1 dy

= 22−2b
∫ 1

y=0

(1− y2)b−1 dy

= 21−2b
∫ 1

x=0

x1/2−1(1− x)b−1 dx

= 21−2bB( 1
2 , b).

Repeating,

(1) B(b, b) = 21−2bB( 1
2 , b), b > 0.

Also, we will show below that

(2) Γ(a)Γ(b) = Γ(a+ b)B(a, b), a > 0, b > 0.

It follows that for all s > 0,

Γ( s
2 )2 = Γ(s)B( s

2 ,
s
2 ) by (2) with a = b = s

2

= Γ(s)21−sB( 1
2 ,

s
2 ) by (1) with b = s

2

= Γ(s)21−s
Γ( 1

2 )Γ( s
2 )

Γ( s+1
2 )

by (2) with a = 1
2 , b = s

2 .

Because Γ( 1
2 ) = π1/2, this gives Legendre’s formula Γ( s

2 )Γ( s+1
2 ) = 21−sπ1/2Γ(s)

for s > 0. And because Γ(s)/
(
Γ( s

2 )Γ( s+1
2 )
)

is entire, this relation extends mero-
morphically to the full complex plane,

Γ
(s

2

)
Γ

(
s+ 1

2

)
= 21−sπ1/2Γ(s), s ∈ C.
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To complete the argument, we establish (2). Compute for a, b > 0, using Fubini’s
theorem and the Haar measure property d(cz)/(cz) = dz/z freely, that

Γ(a)Γ(b) =

∫
t>0

e−tta
dt

t

∫
u>0

e−uub
du

u

=

∫
t>0

∫
u>0

e−t−utaub
du

u

dt

t

=

∫
t>0

∫
u>0

e−t−tuta(tu)b
du

u

dt

t

=

∫
u>0

∫
t>0

e−(1+u)tta+b dt

t
ub

du

u

=

∫
u>0

∫
t>0

e−t
(

t

1 + u

)a+b
dt

t
ub

du

u

=

∫
t>0

e−tta+b dt

t

∫
u>0

(
1

1 + u

)a+b

ub
du

u

= Γ(a+ b)

∫
u>0

(
1

1 + u

)a+1(
u

1 + u

)b−1

du.

Let x = 1/(1 + u), so that x goes from 1 to 0 and du = d(1/x − 1) = −dx/x2, to
get the desired result,

Γ(a)Γ(b) = Γ(a+ b)

∫ 1

x=0

xa−1(1− x)b−1 dx = Γ(a+ b)B(a, b).

As an end note, we observe that the methods here again establish the symmetry
formula for the gamma function. Specifically, for 0 < s < 1, the long computation
just shown also gives, with a = s and b = 1 − s, now denoting the variable of
integration x rather than u,

Γ(s)Γ(1− s) = Γ(1)

∫
x>0

(
1

1 + x

)s+1(
x

1 + x

)−s
dx =

∫
x>0

x−s

1 + x
dx.

We have evaluated this last integral by contour integration and then noted that the
resulting identity extends to all s,

Γ(s)Γ(1− s) =
π

sinπs
, s ∈ C.


